cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A010806 18th powers: a(n) = n^18.

This page as a plain text file.
%I A010806 #29 Sep 08 2022 08:44:37
%S A010806 0,1,262144,387420489,68719476736,3814697265625,101559956668416,
%T A010806 1628413597910449,18014398509481984,150094635296999121,
%U A010806 1000000000000000000,5559917313492231481,26623333280885243904
%N A010806 18th powers: a(n) = n^18.
%H A010806 Vincenzo Librandi, <a href="/A010806/b010806.txt">Table of n, a(n) for n = 0..1000</a>
%H A010806 <a href="/index/Rec#order_19">Index entries for linear recurrences with constant coefficients</a>, signature (19, -171, 969, -3876, 11628, -27132, 50388, -75582, 92378, -92378, 75582, -50388, 27132, -11628, 3876, -969, 171, -19, 1).
%F A010806 Totally multiplicative sequence with a(p) = p^18 for prime p. Multiplicative sequence with a(p^e) = p^(18e). - _Jaroslav Krizek_, Nov 01 2009
%F A010806 From _Ilya Gutkovskiy_, Feb 27 2017: (Start)
%F A010806 Dirichlet g.f.: zeta(s-18).
%F A010806 Sum_{n>=1} 1/a(n) = 43867*Pi^18/38979295480125 = A013676. (End)
%F A010806 Sum_{n>=1} (-1)^(n+1)/a(n) = 131071*zeta(18)/131072 = 5749691557*Pi^18/5109094217170944000. - _Amiram Eldar_, Oct 09 2020
%t A010806 Range[0, 17]^18 (* _Alonso del Arte_, Feb 17 2015 *)
%o A010806 (Magma) [n^18: n in [0..15]]; // _Vincenzo Librandi_, Jun 19 2011
%o A010806 (PARI) for(n=0,15,print1(n^18,", ")) \\ _Derek Orr_, Feb 27 2017
%Y A010806 Cf. A013676.
%K A010806 nonn,mult,easy
%O A010806 0,3
%A A010806 _N. J. A. Sloane_