cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A010811 23rd powers: a(n) = n^23.

This page as a plain text file.
%I A010811 #31 Sep 08 2022 08:44:37
%S A010811 0,1,8388608,94143178827,70368744177664,11920928955078125,
%T A010811 789730223053602816,27368747340080916343,590295810358705651712,
%U A010811 8862938119652501095929,100000000000000000000000
%N A010811 23rd powers: a(n) = n^23.
%H A010811 Vincenzo Librandi, <a href="/A010811/b010811.txt">Table of n, a(n) for n = 0..1000</a>
%H A010811 <a href="/index/Di#divseq">Index to divisibility sequences</a>
%H A010811 <a href="/index/Rec#order_24">Index entries for linear recurrences with constant coefficients</a>, signature (24, -276, 2024, -10626, 42504, -134596, 346104, -735471, 1307504, -1961256, 2496144, -2704156, 2496144, -1961256, 1307504, -735471, 346104, -134596, 42504, -10626, 2024, -276, 24, -1).
%F A010811 Completely multiplicative sequence with a(p) = p^23 for prime p. Multiplicative sequence with a(p^e) = p^(23e). - _Jaroslav Krizek_, Nov 01 2009
%F A010811 From _Amiram Eldar_, Oct 09 2020: (Start)
%F A010811 Dirichlet g.f.: zeta(s-23).
%F A010811 Sum_{n>=1} 1/a(n) = zeta(23).
%F A010811 Sum_{n>=1} (-1)^(n+1)/a(n) = 4194303*zeta(23)/4194304. (End)
%p A010811 A010811:=n->n^23; seq(A010811(n), n=0..20); # _Wesley Ivan Hurt_, Apr 07 2014
%t A010811 Table[n^23, {n, 0, 20}] (* _Wesley Ivan Hurt_, Apr 07 2014 *)
%o A010811 (Magma) [n^23: n in [0..15]]; // _Vincenzo Librandi_, Jun 19 2011
%o A010811 (PARI) a(n)=n^23 \\ _Charles R Greathouse IV_, Jun 28 2015
%K A010811 nonn,mult,easy
%O A010811 0,3
%A A010811 _N. J. A. Sloane_