This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A010812 #30 Sep 08 2022 08:44:37 %S A010812 0,1,16777216,282429536481,281474976710656,59604644775390625, %T A010812 4738381338321616896,191581231380566414401,4722366482869645213696, %U A010812 79766443076872509863361,1000000000000000000000000 %N A010812 24th powers: a(n) = n^24. %H A010812 Vincenzo Librandi, <a href="/A010812/b010812.txt">Table of n, a(n) for n = 0..1000</a> %H A010812 <a href="/index/Rec#order_25">Index entries for linear recurrences with constant coefficients</a>, signature (25, -300, 2300, -12650, 53130, -177100, 480700, -1081575, 2042975, -3268760, 4457400, -5200300, 5200300, -4457400, 3268760, -2042975, 1081575, -480700, 177100, -53130, 12650, -2300, 300, -25, 1). %F A010812 Totally multiplicative sequence with a(p) = p^24 for prime p. Multiplicative sequence with a(p^e) = p^(24e). - _Jaroslav Krizek_, Nov 01 2009 %F A010812 a(n) = A008456(n)^2. - _Michel Marcus_, Feb 27 2018 %F A010812 From _Amiram Eldar_, Oct 09 2020: (Start) %F A010812 Dirichlet g.f.: zeta(s-24). %F A010812 Sum_{n>=1} 1/a(n) = zeta(24) = 236364091*Pi^24/201919571963756521875. %F A010812 Sum_{n>=1} (-1)^(n+1)/a(n) = 8388607*zeta(24)/8388608 = 1982765468311237*Pi^24/1693824136731743669452800000. (End) %t A010812 Range[0,10]^24 (* _Harvey P. Dale_, Sep 04 2017 *) %o A010812 (Magma) [n^24: n in [0..15]]; // _Vincenzo Librandi_, Jun 19 2011 %o A010812 (PARI) a(n) = n^24; \\ _Michel Marcus_, Feb 27 2018 %Y A010812 Cf. A008456 (n^12). %K A010812 nonn,mult,easy %O A010812 0,3 %A A010812 _N. J. A. Sloane_