This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A010813 #30 Sep 08 2022 08:44:37 %S A010813 0,1,33554432,847288609443,1125899906842624,298023223876953125, %T A010813 28430288029929701376,1341068619663964900807,37778931862957161709568, %U A010813 717897987691852588770249,10000000000000000000000000 %N A010813 25th powers: a(n) = n^25. %H A010813 Vincenzo Librandi, <a href="/A010813/b010813.txt">Table of n, a(n) for n = 0..1000</a> %H A010813 <a href="/index/Di#divseq">Index to divisibility sequences</a> %H A010813 <a href="/index/Rec#order_26">Index entries for linear recurrences with constant coefficients</a>, signature (26, -325, 2600, -14950, 65780, -230230, 657800, -1562275, 3124550, -5311735, 7726160, -9657700, 10400600, -9657700, 7726160, -5311735, 3124550, -1562275, 657800, -230230, 65780, -14950, 2600, -325, 26, -1). %F A010813 Completely multiplicative sequence with a(p) = p^25 for prime p. Multiplicative sequence with a(p^e) = p^(25e). - _Jaroslav Krizek_, Nov 01 2009 %F A010813 From _Amiram Eldar_, Oct 09 2020: (Start) %F A010813 Dirichlet g.f.: zeta(s-25). %F A010813 Sum_{n>=1} 1/a(n) = zeta(25). %F A010813 Sum_{n>=1} (-1)^(n+1)/a(n) = 16777215*zeta(25)/16777216. (End) %t A010813 Range[0, 9]^25 (* _Alonso del Arte_, Apr 04 2015 *) %o A010813 (Magma) [n^25: n in [0..15]]; // _Vincenzo Librandi_, Jun 19 2011 %o A010813 (PARI) a(n)=n^25 \\ _Charles R Greathouse IV_, Jun 28 2015 %K A010813 nonn,mult,easy %O A010813 0,3 %A A010813 _N. J. A. Sloane_