This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A010820 #24 Jul 08 2025 01:46:29 %S A010820 1,-13,65,-130,-65,728,-871,-715,1560,845,78,-6513,2730,8605,-4355, %T A010820 2483,-13299,-2275,11440,10010,19734,-41834,-11375,12870,-2730,14911, %U A010820 33201,25155,-70070,-36595,-28925,64389,13650,52780 %N A010820 Expansion of Product_{k>=1} (1 - x^k)^13. %D A010820 Newman, Morris; A table of the coefficients of the powers of eta(tau). Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216. %H A010820 Seiichi Manyama, <a href="/A010820/b010820.txt">Table of n, a(n) for n = 0..10000</a> %H A010820 M. Boylan, <a href="http://dx.doi.org/10.1016/S0022-314X(02)00037-9">Exceptional congruences for the coefficients of certain eta-product newforms</a>, J. Number Theory 98 (2003), no. 2, 377-389. %H A010820 <a href="/index/Pro#1mxtok">Index entries for expansions of Product_{k >= 1} (1-x^k)^m</a> %F A010820 a(0) = 1, a(n) = -(13/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - _Seiichi Manyama_, Mar 27 2017 %F A010820 G.f.: exp(-13*Sum_{k>=1} x^k/(k*(1 - x^k))). - _Ilya Gutkovskiy_, Feb 05 2018 %e A010820 1 - 13*x + 65*x^2 - 130*x^3 - 65*x^4 + 728*x^5 - 871*x^6 - 715*x^7 + ... %K A010820 sign %O A010820 0,2 %A A010820 _N. J. A. Sloane_