This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A010824 #21 Jul 08 2025 01:46:51 %S A010824 1,-18,135,-510,765,1242,-7038,8280,9180,-27710,3519,20196,50370, %T A010824 -68850,-153765,244782,52785,-71010,-130525,-343620,517293,54978, %U A010824 498780,-390150,-1835865,1161270,896751,793730,-633420 %N A010824 Expansion of Product_{k>=1} (1 - x^k)^18. %D A010824 Morris Newman, A table of the coefficients of the powers of eta(tau), Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216. %H A010824 Seiichi Manyama, <a href="/A010824/b010824.txt">Table of n, a(n) for n = 0..10000</a> %H A010824 M. Boylan, <a href="http://dx.doi.org/10.1016/S0022-314X(02)00037-9">Exceptional congruences for the coefficients of certain eta-product newforms</a>, J. Number Theory 98 (2003), no. 2, 377-389. %H A010824 <a href="/index/Pro#1mxtok">Index entries for expansions of Product_{k >= 1} (1-x^k)^m</a> %F A010824 a(0) = 1, a(n) = -(18/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - _Seiichi Manyama_, Mar 27 2017 %F A010824 G.f.: exp(-18*Sum_{k>=1} x^k/(k*(1 - x^k))). - _Ilya Gutkovskiy_, Feb 05 2018 %K A010824 sign %O A010824 0,2 %A A010824 _N. J. A. Sloane_