This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A010830 #23 Aug 13 2023 08:47:49 %S A010830 1,-25,275,-1700,6050,-9405,-15550,107525,-182875,-81675,756655, %T A010830 -801550,-662975,1220175,1361350,-209440,-9601900,8608900,14889050, %U A010830 -19948500,-6262465,-7057550,38788925,19716425,-69119875,23579969,-82427400,98068850,191984400 %N A010830 Expansion of Product_{k>=1} (1-x^k)^25. %D A010830 Morris Newman, A table of the coefficients of the powers of eta(tau). Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216. %H A010830 Seiichi Manyama, <a href="/A010830/b010830.txt">Table of n, a(n) for n = 0..10000</a> %H A010830 M. Boylan, <a href="http://dx.doi.org/10.1016/S0022-314X(02)00037-9">Exceptional congruences for the coefficients of certain eta-product newforms</a>, J. Number Theory 98 (2003), no. 2, 377-389. %H A010830 <a href="/index/Pro#1mxtok">Index entries for expansions of Product_{k >= 1} (1-x^k)^m</a> %F A010830 a(0) = 1, a(n) = -(25/n) * Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - _Seiichi Manyama_, Aug 13 2023 %Y A010830 Column k=25 of A286354. %Y A010830 Cf. A000203. %K A010830 sign %O A010830 0,2 %A A010830 _N. J. A. Sloane_