cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A010841 Expansion of Product_{k>=1} (1-x^k)^64.

This page as a plain text file.
%I A010841 #25 May 28 2025 00:57:29
%S A010841 1,-64,1952,-37632,512400,-5207936,40618368,-244952576,1124362248,
%T A010841 -3684692800,6607738816,8603838208,-109557823168,389162471040,
%U A010841 -599467398400,-815811136000,6834665221028,-15689583552384,5284986829472,66706108652800,-183175485196256,124242038746624
%N A010841 Expansion of Product_{k>=1} (1-x^k)^64.
%D A010841 Newman, Morris; A table of the coefficients of the powers of eta(tau). Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216.
%H A010841 Seiichi Manyama, <a href="/A010841/b010841.txt">Table of n, a(n) for n = 0..10000</a>
%H A010841 M. Boylan, <a href="http://dx.doi.org/10.1016/S0022-314X(02)00037-9">Exceptional congruences for the coefficients of certain eta-product newforms</a>, J. Number Theory 98 (2003), no. 2, 377-389.
%H A010841 <a href="/index/Pro#1mxtok">Index entries for expansions of Product_{k >= 1} (1-x^k)^m</a>
%F A010841 a(0) = 1, a(n) = -(64/n) * Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - _Seiichi Manyama_, Aug 13 2023
%t A010841 nmax=20; CoefficientList[Series[Product[(1-x^k)^64,{k,nmax}],{x,0,nmax}],x] (* _Stefano Spezia_, May 27 2025 *)
%Y A010841 Column k=64 of A286354.
%Y A010841 Cf. A000203, A082559.
%K A010841 sign
%O A010841 0,2
%A A010841 _N. J. A. Sloane_