This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A010885 #31 Feb 19 2024 01:51:33 %S A010885 1,2,3,4,5,6,1,2,3,4,5,6,1,2,3,4,5,6,1,2,3,4,5,6,1,2,3,4,5,6,1,2,3,4, %T A010885 5,6,1,2,3,4,5,6,1,2,3,4,5,6,1,2,3,4,5,6,1,2,3,4,5,6,1,2,3,4,5,6,1,2, %U A010885 3,4,5,6,1,2,3,4,5,6,1,2,3 %N A010885 Period 6: repeat [1, 2, 3, 4, 5, 6]. %C A010885 Partial sums are given by A130484(n)+n+1. - _Hieronymus Fischer_, Jun 08 2007 %C A010885 41152/333333 = 0.123456123456123456... [_Eric Desbiaux_, Nov 03 2008] %H A010885 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,1). %F A010885 a(n) = 1 + (n mod 6). - _Paolo P. Lava_, Nov 21 2006 %F A010885 a(n) = A010875(n)+1. G.f.: g(x)=(Sum_{0<=k<6} (k+1)*x^k)/(1-x^6). Also g(x)=(6*x^7-7*x^6+1)/((1-x^6)*(1-x)^2). - _Hieronymus Fischer_, Jun 08 2007 %F A010885 From _Wesley Ivan Hurt_, Jun 17 2016: (Start) %F A010885 G.f.: (1+2*x+3*x^2+4*x^3+5*x^4+6*x^5)/(1-x^6). %F A010885 a(n) = (21-3*cos(n*Pi)-4*sqrt(3)*cos((1-4*n)*Pi/6)-12*sin((1+2*n)*Pi/6))/6. %F A010885 a(n) = a(n-6) for n>5. (End) %p A010885 A010885:=n->(21-3*cos(n*Pi)-4*sqrt(3)*cos((1-4*n)*Pi/6)-12*sin((1+2*n)*Pi/6))/6: seq(A010885(n), n=0..100); # _Wesley Ivan Hurt_, Jun 17 2016 %t A010885 Flatten[Table[Range[6],{n,15}]] (* _Harvey P. Dale_, Aug 01 2011 *) %t A010885 PadRight[{},90,Range[6]] (* _Harvey P. Dale_, Sep 23 2019 *) %o A010885 (Magma) &cat[[1..6]: n in [0..20]]; // _Wesley Ivan Hurt_, Jun 17 2016 %Y A010885 Cf. A010872, A010873, A010874, A010875, A010876, A004526, A002264, A002265, A002266. %Y A010885 Cf. A177158 (decimal expansion of (103+2*sqrt(4171))/162). [From _Klaus Brockhaus_, May 03 2010] %K A010885 nonn,easy %O A010885 0,2 %A A010885 _N. J. A. Sloane_