A011185 A B_2 sequence: a(n) = least value such that sequence increases and pairwise sums of distinct elements are all distinct.
1, 2, 3, 5, 8, 13, 21, 30, 39, 53, 74, 95, 128, 152, 182, 212, 258, 316, 374, 413, 476, 531, 546, 608, 717, 798, 862, 965, 1060, 1161, 1307, 1386, 1435, 1556, 1722, 1834, 1934, 2058, 2261, 2497, 2699, 2874, 3061, 3197, 3332, 3629, 3712, 3868, 4140, 4447, 4640
Offset: 1
Keywords
Links
- Klaus Brockhaus and Dan Hoey, Table of n, a(n) for n = 1..2839
- Index entries for B_2 sequences.
Crossrefs
Programs
-
Python
from itertools import islice def agen(): # generator of terms aset, sset, k = set(), set(), 0 while True: k += 1 while any(k+an in sset for an in aset): k += 1 yield k; sset.update(k+an for an in aset); aset.add(k) print(list(islice(agen(), 51))) # Michael S. Branicky, Feb 05 2023
Formula
a(n) = A010672(n-1)+1.
Comments