cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A011262 In the prime factorization of n, increment odd powers and decrement even powers (multiplicative and self-inverse).

This page as a plain text file.
%I A011262 #28 Dec 30 2024 03:57:35
%S A011262 1,4,9,2,25,36,49,16,3,100,121,18,169,196,225,8,289,12,361,50,441,484,
%T A011262 529,144,5,676,81,98,841,900,961,64,1089,1156,1225,6,1369,1444,1521,
%U A011262 400,1681,1764,1849,242,75,2116,2209,72,7,20,2601,338,2809,324,3025,784,3249
%N A011262 In the prime factorization of n, increment odd powers and decrement even powers (multiplicative and self-inverse).
%H A011262 Paul Tek, <a href="/A011262/b011262.txt">Table of n, a(n) for n = 1..10000</a>
%H A011262 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>.
%F A011262 Multiplicative with f(p^k) = p^(k-1) if k even, p^(k+1) if k odd.
%F A011262 a(n) = Product_{k = 1..A001221(n)} A027748(n,k) ^ A103889(A124010(n,k)). - _Reinhard Zumkeller_, Jun 23 2013
%F A011262 Sum_{k=1..n} a(k) ~ c * n^3, where c = (1/3) * Product_{p prime} ((p^5 + p^4 - p + 1)/(p^5 + p^4 + p^3 + p^2)) = 0.21311151701724196530... . - _Amiram Eldar_, Oct 13 2022
%t A011262 f[n_, k_] := n^(If[EvenQ[k], k - 1, k + 1]); Table[Times @@ f @@@ FactorInteger[n], {n, 57}] (* _Jayanta Basu_, Aug 14 2013 *)
%o A011262 (PARI) a(n)=my(f=factor(n));return(prod(i=1,#f[,1],f[i,1]^(f[i,2]-(-1)^f[i,2]))) \\ _Paul Tek_, Jun 01 2013
%o A011262 (Haskell)
%o A011262 a011262 n = product $ zipWith (^)
%o A011262                       (a027748_row n) (map a103889 $ a124010_row n)
%o A011262 -- _Reinhard Zumkeller_, Jun 23 2013
%Y A011262 Cf. A001221, A011264, A027748, A103889, A124010.
%K A011262 nonn,easy,mult
%O A011262 1,2
%A A011262 _Marc LeBrun_