cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A011264 In the prime factorization of n, increment even powers and decrement odd powers (multiplicative).

This page as a plain text file.
%I A011264 #25 May 06 2025 11:49:05
%S A011264 1,1,1,8,1,1,1,4,27,1,1,8,1,1,1,32,1,27,1,8,1,1,1,4,125,1,9,8,1,1,1,
%T A011264 16,1,1,1,216,1,1,1,4,1,1,1,8,27,1,1,32,343,125,1,8,1,9,1,4,1,1,1,8,1,
%U A011264 1,27,128,1,1,1,8,1,1,1,108,1,1,125,8,1,1,1,32,243,1,1,8,1,1,1,4,1,27,1,8,1,1
%N A011264 In the prime factorization of n, increment even powers and decrement odd powers (multiplicative).
%H A011264 Reinhard Zumkeller, <a href="/A011264/b011264.txt">Table of n, a(n) for n = 1..10000</a>
%H A011264 Vaclav Kotesovec, <a href="/A011264/a011264.jpg">Graph - the asymptotic ratio (10000 terms)</a>
%F A011264 a(n) = Product_{k=1..A001221(n)} (A027748(n,k)^A004442(A124010(n,k))). - _Reinhard Zumkeller_, Jun 23 2013
%F A011264 From _Amiram Eldar_, Jan 07 2023: (Start)
%F A011264 a(n) = n^2/A011262(n).
%F A011264 a(n) = n*A007947(n)/A007913(n)^2.
%F A011264 a(n) = n*A336643(n)/A007913(n).
%F A011264 a(n) = A356191(n)/A007913(n). (End)
%F A011264 Dirichlet g.f.: zeta(2*s-2) * Product_{p prime} (1 + 1/p^s + 1/p^(2*s-3) - 1/p^(2*s-2)). - _Amiram Eldar_, Sep 21 2023
%F A011264 From _Vaclav Kotesovec_, May 06 2025: (Start)
%F A011264 Dirichlet g.f.: zeta(2*s-3) * Product_{p prime} (1 + (p-1)*p^(3-2*s) + p^(1-s) - (p-1)*(p^s + p^3)/(p^(2*s) - p^2)).
%F A011264 Sum_{k=1..n} a(k) ~ n^2/4. (End)
%t A011264 f[n_, k_] := n^(If[EvenQ[k], k + 1, k - 1]); Table[Times @@ f @@@ FactorInteger[n], {n, 94}] (* _Jayanta Basu_, Aug 14 2013 *)
%o A011264 (Haskell)
%o A011264 a011264 n = product $ zipWith (^)
%o A011264                       (a027748_row n) (map a004442 $ a124010_row n)
%o A011264 -- _Reinhard Zumkeller_, Jun 23 2013
%o A011264 (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^if(f[i,2]%2, f[i,2]-1, f[i,2]+1));} \\ _Amiram Eldar_, Jan 07 2023
%Y A011264 Cf. A001221, A004442, A007913, A007947, A011262, A027748, A336643, A356191.
%K A011264 easy,nonn,mult
%O A011264 1,4
%A A011264 _Marc LeBrun_