This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A011274 #32 Oct 07 2017 02:35:20 %S A011274 1,2,1,7,4,1,31,18,6,1,154,90,33,8,1,820,481,185,52,10,1,4575,2690, %T A011274 1065,324,75,12,1,26398,15547,6276,2006,515,102,14,1,156233,92124, %U A011274 37711,12468,3420,766,133,16,1,943174,556664,230277,78030,22412,5439,1085,168,18,1 %N A011274 Triangle of numbers of hybrid rooted trees (divided by Fibonacci numbers). %C A011274 Triangle T(n,k) = [x^(n-k)] A(x)^k where A(x) is the o.g.f. of A007863. - _Vladimir Kruchinin_, Mar 17 2011 %C A011274 Riordan array (f(x), x*f(x)) where f(x) is the g.f. of A007863. - _Philippe Deléham_, Feb 03 2014 %H A011274 Vincenzo Librandi, <a href="/A011274/b011274.txt">Rows n = 1..100, flattened</a> %H A011274 Vladimir Kruchinin, D. V. Kruchinin, <a href="http://arxiv.org/abs/1103.2582">Composita and their properties</a>, arXiv:1103.2582 [math.CO], 2011-2013. %H A011274 J. M. Pallo, <a href="http://dx.doi.org/10.1080/00207169408804251">On the listing and random generation of hybrid binary trees</a>, International Journal of Computer Mathematics, 50 (1994) 135-145. %H A011274 <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a> %F A011274 T(n,k) = (k/n) *Sum_{i=0..n-k} binomial(i+n-1,n-1)*binomial(i+n,n-k-i). - _Vladimir Kruchinin_, Mar 17 2011 %F A011274 (r/(m*n+r))*T((m+1)*n+r,m*n+r) = Sum_{k=1..n} k*T((m+1)*n-k,m*n)*T(r+k,r)/n. - _Vladimir Kruchinin_, Mar 17 2011 %F A011274 T(n,m) = (m/n)*Sum_{k=1..n-m+1} k*A007863(k-1)*T(n-k,m-1), 1 < m <= n. - _Vladimir Kruchinin_, Mar 17 2011 %e A011274 1 %e A011274 2 1 %e A011274 7 4 1 %e A011274 31 18 6 1 %e A011274 154 90 33 8 1 %e A011274 820 481 185 52 10 1 %e A011274 4575 2690 1065 324 75 12 1 %e A011274 Production matrix is: %e A011274 2 1 %e A011274 3 2 1 %e A011274 5 3 2 1 %e A011274 8 5 3 2 1 %e A011274 13 8 5 3 2 1 %e A011274 21 13 8 5 3 2 1 %e A011274 34 21 13 8 5 3 2 1 %e A011274 55 34 21 13 8 5 3 2 1 %e A011274 89 55 34 21 13 8 5 3 2 1 %e A011274 ... - _Philippe Deléham_, Feb 03 2014 %p A011274 A011274 := proc(n,k) k/n*add( binomial(i+n-1,n-1)*binomial(i+n,n-k-i),i=0..n-k) ; end proc: # _R. J. Mathar_, Mar 21 2011 %t A011274 t[n_, k_] := k/n*Binomial[n, k]*HypergeometricPFQ[ {k-n, n, n+1}, {1/2 + k/2, 1+k/2}, -1/4]; Flatten[ Table[ t[n, k], {n, 1, 10}, {k, 1, n}]] (* _Jean-François Alcover_, Dec 02 2011, after _Vladimir Kruchinin_ *) %o A011274 (Maxima) A011274(n,k):= k/n*sum(binomial(i+n-1,n-1)*binomial(i+n,n-k-i), i,0,n-k); /* _Vladimir Kruchinin_, Mar 17 2011 */ %Y A011274 Cf. A000045, A011270, A011272. %K A011274 nonn,easy,tabl,nice %O A011274 1,2 %A A011274 Jean Pallo (pallo(AT)u-bourgogne.fr)