cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A011274 Triangle of numbers of hybrid rooted trees (divided by Fibonacci numbers).

This page as a plain text file.
%I A011274 #32 Oct 07 2017 02:35:20
%S A011274 1,2,1,7,4,1,31,18,6,1,154,90,33,8,1,820,481,185,52,10,1,4575,2690,
%T A011274 1065,324,75,12,1,26398,15547,6276,2006,515,102,14,1,156233,92124,
%U A011274 37711,12468,3420,766,133,16,1,943174,556664,230277,78030,22412,5439,1085,168,18,1
%N A011274 Triangle of numbers of hybrid rooted trees (divided by Fibonacci numbers).
%C A011274 Triangle T(n,k) = [x^(n-k)] A(x)^k where A(x) is the o.g.f. of A007863. - _Vladimir Kruchinin_, Mar 17 2011
%C A011274 Riordan array (f(x), x*f(x)) where f(x) is the g.f. of A007863. - _Philippe Deléham_, Feb 03 2014
%H A011274 Vincenzo Librandi, <a href="/A011274/b011274.txt">Rows n = 1..100, flattened</a>
%H A011274 Vladimir Kruchinin, D. V. Kruchinin, <a href="http://arxiv.org/abs/1103.2582">Composita and their properties</a>, arXiv:1103.2582 [math.CO], 2011-2013.
%H A011274 J. M. Pallo, <a href="http://dx.doi.org/10.1080/00207169408804251">On the listing and random generation of hybrid binary trees</a>, International Journal of Computer Mathematics, 50 (1994) 135-145.
%H A011274 <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a>
%F A011274 T(n,k) = (k/n) *Sum_{i=0..n-k} binomial(i+n-1,n-1)*binomial(i+n,n-k-i). - _Vladimir Kruchinin_, Mar 17 2011
%F A011274 (r/(m*n+r))*T((m+1)*n+r,m*n+r) = Sum_{k=1..n} k*T((m+1)*n-k,m*n)*T(r+k,r)/n. - _Vladimir Kruchinin_, Mar 17 2011
%F A011274 T(n,m) = (m/n)*Sum_{k=1..n-m+1} k*A007863(k-1)*T(n-k,m-1), 1 < m <= n. - _Vladimir Kruchinin_, Mar 17 2011
%e A011274      1
%e A011274      2    1
%e A011274      7    4    1
%e A011274     31   18    6   1
%e A011274    154   90   33   8  1
%e A011274    820  481  185  52 10  1
%e A011274   4575 2690 1065 324 75 12 1
%e A011274 Production matrix is:
%e A011274    2   1
%e A011274    3   2   1
%e A011274    5   3   2   1
%e A011274    8   5   3   2   1
%e A011274   13   8   5   3   2   1
%e A011274   21  13   8   5   3   2   1
%e A011274   34  21  13   8   5   3   2   1
%e A011274   55  34  21  13   8   5   3   2   1
%e A011274   89  55  34  21  13   8   5   3   2   1
%e A011274   ... - _Philippe Deléham_, Feb 03 2014
%p A011274 A011274 := proc(n,k) k/n*add( binomial(i+n-1,n-1)*binomial(i+n,n-k-i),i=0..n-k) ; end proc: # _R. J. Mathar_, Mar 21 2011
%t A011274 t[n_, k_] := k/n*Binomial[n, k]*HypergeometricPFQ[ {k-n, n, n+1}, {1/2 + k/2, 1+k/2}, -1/4]; Flatten[ Table[ t[n, k], {n, 1, 10}, {k, 1, n}]] (* _Jean-François Alcover_, Dec 02 2011, after _Vladimir Kruchinin_ *)
%o A011274 (Maxima) A011274(n,k):= k/n*sum(binomial(i+n-1,n-1)*binomial(i+n,n-k-i), i,0,n-k); /* _Vladimir Kruchinin_, Mar 17 2011 */
%Y A011274 Cf. A000045, A011270, A011272.
%K A011274 nonn,easy,tabl,nice
%O A011274 1,2
%A A011274 Jean Pallo (pallo(AT)u-bourgogne.fr)