This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A011429 #37 Jul 08 2025 02:17:02 %S A011429 1,3,4,9,2,8,2,8,4,7,6,7,3,5,6,3,3,1,5,1,2,2,2,1,9,7,0,5,8,0,9,0,3,2, %T A011429 7,6,6,6,9,1,8,8,8,4,4,9,1,3,7,5,9,5,3,4,8,5,2,5,0,6,0,6,1,4,1,6,6,5, %U A011429 9,4,7,7,2,5,6,7,1,0,3,5,4,7,6,9,4,6,5,0,2,6,3,6,2,5,3,3,0,9,6 %N A011429 Decimal expansion of 10th root of 20. %H A011429 Ivan Panchenko, <a href="/A011429/b011429.txt">Table of n, a(n) for n = 1..1000</a> %H A011429 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GaussMultiplicationFormula.html">Gauss Multiplication Formula</a>. %F A011429 From _Andrea Pinos_, Jul 08 2023: (Start) %F A011429 Equals 2*Pi*(Product_{k=1..5} Gamma(k/10)*Gamma(1 - k/10))^(-1/5). %F A011429 General result: (4*y)^(1/(2*y)) = 2*Pi/(Product_{k=1..y} Gamma(k/(2*y))*Gamma(1 - k/(2*y)) )^(1/y). (End) %e A011429 1.3492828476735633151222197... %t A011429 RealDigits[20^(1/10), 10, 100][[1]] (* _Alonso del Arte_, Feb 20 2015 *) %o A011429 (PARI) sqrtn(20, 10) \\ _Michel Marcus_, Jul 06 2023 %Y A011429 Cf. A011105, A011439. %K A011429 nonn,cons,easy %O A011429 1,2 %A A011429 _N. J. A. Sloane_