This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A011533 #40 Sep 08 2022 08:44:37 %S A011533 3,13,23,30,31,32,33,34,35,36,37,38,39,43,53,63,73,83,93,103,113,123, %T A011533 130,131,132,133,134,135,136,137,138,139,143,153,163,173,183,193,203, %U A011533 213,223,230,231,232,233,234,235,236,237,238,239,243,253 %N A011533 Numbers that contain a 3. %H A011533 Reinhard Zumkeller, <a href="/A011533/b011533.txt">Table of n, a(n) for n = 1..10000</a> %H A011533 James Grime and Brady Haran, <a href="http://www.youtube.com/watch?v=UfEiJJGv4CE">3 is everywhere</a>, Numberphile video, 2012. %H A011533 <a href="/index/Ar#10-automatic">Index entries for 10-automatic sequences</a>. %F A011533 a(n) ~ n. - _Charles R Greathouse IV_, Aug 28 2012 %F A011533 For m >= 1, a(10^m - 9^m) = 10^m-7, a(10^m - 9^m + 1) = 10^m + 3. - _Robert Israel_, Jan 11 2016 %p A011533 M:= 3: # to get all terms of up to M digits %p A011533 B:= {3}: A:= {3}: %p A011533 for i from 2 to M do %p A011533 B:= map(t -> seq(10*t+j,j=0..9),B) union %p A011533 {seq(10*x+3,x=10^(i-2)..10^(i-1)-1)}: %p A011533 A:= A union B; %p A011533 od: %p A011533 sort(convert(A,list));# _Robert Israel_, Jan 11 2016 %t A011533 Select[Range[600] - 1, DigitCount[#, 10, 3]>0 &] (* _Vincenzo Librandi_, Jan 11 2016 *) %o A011533 (Haskell) %o A011533 a011533 n = a011533_list !! (n-1) %o A011533 a011533_list = filter ((elem '3') . show) [0..] %o A011533 -- _Reinhard Zumkeller_, Apr 10 2015 %o A011533 (Magma) [n: n in [0..500] | 3 in Intseq(n)]; // _Vincenzo Librandi_, Jan 11 2016 %o A011533 (PARI) isok(n)=my(d=digits(n)); for (k=1, #d, if (d[k] == 3, return (1))); \\ _Michel Marcus_, Jan 11 2016 %o A011533 (GAP) Filtered([1..260],n->3 in ListOfDigits(n)); # _Muniru A Asiru_, Feb 23 2019 %Y A011533 Complement: A052405. %Y A011533 Cf. A016189. %Y A011533 Numbers that contain a digit k: A011531 (k=1), A011532 (k=2), A011534 (k=4), A011535 (k=5), A011536 (k=6), A011537 (k=7), A011538 (k=8), A011539 (k=9), A011540 (k=0). %K A011533 nonn,base,easy %O A011533 1,1 %A A011533 _N. J. A. Sloane_