A011545 a(n) is the integer whose decimal digits are the first n+1 decimal digits of Pi.
3, 31, 314, 3141, 31415, 314159, 3141592, 31415926, 314159265, 3141592653, 31415926535, 314159265358, 3141592653589, 31415926535897, 314159265358979, 3141592653589793, 31415926535897932, 314159265358979323, 3141592653589793238, 31415926535897932384
Offset: 0
References
- Martin Gardner, Fractal Music, Hypercards and More: Mathematical Recreations from Scientific American Magazine, W. H. Freemand and Company, New York, NY, 1992, pp. 274-275.
Links
- Paolo Xausa, Table of n, a(n) for n = 0..100
- G. Galperin, Playing pool with π (the number π from a billiard point of view), Regular and Chaotic Dynamics, 8 (2003), 375-394.
- Wolfgang Haken, An attempt to understand the four color problem, in Journal of Graph Theory, Vol. 1, Issue 3, 1977, pp. 193-206.
- G. Sanderson, Why do colliding blocks compute pi?, a 3Blue1Brown YouTube video, Jan 20 2019.
Crossrefs
Programs
-
Mathematica
s=RealDigits[Pi, 10, 30][[1]]; Table[FromDigits[Take[s, n]], {n, Length[s]}] (* Or: *) a[n_] := IntegerPart[Pi*10^n]; Table[a[n], {n, 0, 9}] (* Peter Luschny, Mar 15 2024 *)
-
PARI
A011545(n)={localprec(n+3); Pi\10^-n} \\ M. F. Hasler, Mar 15 2024
Formula
a(n) = floor(Pi*10^n).
Extensions
Definition corrected by M. F. Hasler, Mar 15 2024
Comments