cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A011553 Number of standard Young tableaux of type (n,n,n) whose (2,1) entry is odd.

This page as a plain text file.
%I A011553 #24 Nov 22 2023 06:04:29
%S A011553 0,2,16,182,2400,35310,562848,9540674,169777504,3142665968,
%T A011553 60099912320,1181283863632,23767586624960,487947659276790,
%U A011553 10195163202404160,216335108170636650,4653803620322450880,101343766487960918460,2231268469684932939360,49614581272087698764820
%N A011553 Number of standard Young tableaux of type (n,n,n) whose (2,1) entry is odd.
%D A011553 For definition see James and Kerber, Representation Theory of Symmetric Group, Addison-Wesley, 1981, p. 107.
%H A011553 Alois P. Heinz, <a href="/A011553/b011553.txt">Table of n, a(n) for n = 1..200</a>
%H A011553 <a href="/index/Y#Young">Index entries for sequences related to Young tableaux.</a>
%F A011553 a(n) ~ 3^(3*n+7/2) / (64*Pi*n^4). - _Vaclav Kotesovec_, Sep 06 2014
%F A011553 Conjecture D-finite with recurrence 6*(n+2)*(n+1)^2*a(n) -(n+1)*(164*n^2-179*n+51) *a(n-1) +(46*n^3-609*n^2+812*n+12) *a(n-2) +12*(3*n-4) *(2*n-5) *(3*n-5)*a(n-3)=0. - _R. J. Mathar_, Nov 22 2023
%e A011553 a(2) = 2 because the standard Young tableaux of type (2,2,2) whose (2,1) entry is odd are:
%e A011553 +---+   +---+
%e A011553 |1 2|   |1 2|
%e A011553 |3 5|   |3 4|
%e A011553 |4 6|   |5 6|
%e A011553 +---+   +---+  - _Alois P. Heinz_, Feb 28 2012
%Y A011553 Cf. A123555.
%K A011553 nonn
%O A011553 1,2
%A A011553 giambruno(AT)ipamat.math.unipa.it
%E A011553 Definition corrected by Amitai Regev (amitai.regev(AT)weizmann.ac.il), Nov 15 2006
%E A011553 More terms and offset corrected by _Alois P. Heinz_, Feb 28 2012