A011656 A binary m-sequence: expansion of reciprocal of x^3 + x^2 + 1 (mod 2), shifted by 2 initial 0's.
0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1
Offset: 0
References
- S. W. Golomb, Shift-Register Sequences, Holden-Day, San Francisco, 1967.
- H. D. Lueke, Korrelationssignale, Springer 1992, pp. 43-48.
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier/North Holland, 1978, p. 408.
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,1).
Programs
-
Mathematica
PadLeft[ Mod[ CoefficientList[ Series[1/(1 + x^2 + x^3), {x, 0, 102}], x], 2], 105] (* Robert G. Wilson v *)
-
PARI
A011656_vec(N)=concat([0,0],Vec(lift(O(x^(N-1))+Mod(1,2)/(1+x^2+x^3)))) A011656(n)=(n%7>3)||(n%7==2) \\ Faster than polcoeff(.../(1+x^2+x^3),n-2). - M. F. Hasler, Feb 17 2018
Formula
G.f.: (x^6 + x^5 + x^4 + x^2)/(1-x^7). a(n+7) = a(n). - Ralf Stephan, Aug 05 2013
G.f.: x^2/(1 + x^2 + x^3) in GF(2). - M. F. Hasler, Feb 16 2018
Comments