A011657 A binary m-sequence: expansion of reciprocal of x^3 + x + 1 (mod 2, shifted by 2 initial 0's).
0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1
Offset: 0
References
- S. W. Golomb, Shift-Register Sequences, Holden-Day, San Francisco, 1967.
- H. D. Lueke, Korrelationssignale, Springer 1992, pp. 43-48.
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier/North Holland, 1978, p. 408.
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,1).
Programs
-
Mathematica
Join[{0, 0}, Mod[CoefficientList[1/(x^3 + x + 1) + O[x]^80, x], 2]] (* Jean-François Alcover, Feb 23 2018 *)
-
PARI
A011657(n)=bittest(92,n%7) \\ M. F. Hasler, Feb 17 2018
Formula
G.f.: (x^6 + x^3 + x + 1)/(1-x^7), a(n+7) = a(n). - Ralf Stephan, Aug 05 2013
Comments