cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A011737 A binary m-sequence: expansion of reciprocal of x^24 + x^4 + x^3 + x + 1 (mod 2, shifted by 23 initial 0's).

This page as a plain text file.
%I A011737 #10 Feb 17 2018 13:53:04
%S A011737 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,1,1,1,0,0,
%T A011737 0,1,1,1,0,0,0,1,1,1,0,0,0,0,1,0,0,1,0,1,1,1,0,0,0,0,1,0,0,1,0,1,1,1,
%U A011737 0,0,0,1,0,0,1,1,1,1,0,1,1
%N A011737 A binary m-sequence: expansion of reciprocal of x^24 + x^4 + x^3 + x + 1 (mod 2, shifted by 23 initial 0's).
%C A011737 Sequence is 2^24-1 = 16777215-periodic. - _M. F. Hasler_, Feb 17 2018
%D A011737 S. W. Golomb, Shift-Register Sequences, Holden-Day, San Francisco, 1967.
%D A011737 H. D. Lueke, Korrelationssignale, Springer 1992, pp. 43-48.
%D A011737 F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier/North Holland, 1978, p. 408.
%H A011737 <a href="/index/Rec#order_16777215">Index entries for linear recurrences with constant coefficients</a>, order 16777215.
%F A011737 G.f. = x^23/(x^24 + x^4 + x^3 + x + 1), over GF(2). - _M. F. Hasler_, Feb 17 2018
%o A011737 (PARI) A=matrix(N=24,N,i,j, if(i>1, i==j+1, setsearch([1,3,4,N],j)>0))*Mod(1, 2); a(n)=lift((A^(n-#A+1))[1,1]) \\ _M. F. Hasler_, Feb 17 2018
%Y A011737 Cf. A011655..A011745 for other binary m-sequences, and A011746..A011751 for similar expansions over GF(2).
%K A011737 nonn
%O A011737 0,1
%A A011737 _N. J. A. Sloane_
%E A011737 Edited by _M. F. Hasler_, Feb 17 2018