This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A011738 #17 Mar 27 2018 17:26:04 %S A011738 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,1,0,0,1, %T A011738 0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,1,0,1,0,0,1,1,0,1,0,0,1,1,0,1,0,0,1,1, %U A011738 0,1,0,0,1,1,1,1,0,1,1,1,0 %N A011738 A binary m-sequence: expansion of reciprocal of x^25 + x^3 + 1 (mod 2, shifted by 24 initial 0's). %C A011738 Sequence is 2^25-1 = 33554431-periodic. - _M. F. Hasler_, Feb 17 2018 %D A011738 S. W. Golomb, Shift-Register Sequences, Holden-Day, San Francisco, 1967. %D A011738 H. D. Lueke, Korrelationssignale, Springer 1992, pp. 43-48. %D A011738 F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier/North Holland, 1978, p. 408. %H A011738 Robert Israel, <a href="/A011738/b011738.txt">Table of n, a(n) for n = 0..10000</a> %H A011738 <a href="/index/Rec#order_33554431">Index entries for linear recurrences with constant coefficients</a>, order 33554431. %H A011738 <a href="/index/Per#periodic">Index entries for periodic sequences with large period</a>. %F A011738 G.f. = x^24/(x^25+x^3+1), over GF(2). - _M. F. Hasler_, Feb 17 2018 %p A011738 N:= 200: # to get a(0)..a(N) %p A011738 A:= Array(0..N): %p A011738 A[24]:= 1: %p A011738 for n from 25 to N do A[n]:= A[n-3] + A[n-25] mod 2 od: %p A011738 convert(A,list); # _Robert Israel_, Mar 25 2018 %o A011738 (PARI) A=matrix(N=25,N,i,j, if(i>1, i==j+1, setsearch([3,N],j)>0))*Mod(1, 2); a(n)=lift((A^(n-#A+1))[1,1]) \\ _M. F. Hasler_, Feb 17 2018 %Y A011738 Cf. A011655..A011745 for other binary m-sequences, and A011746..A011751 for similar expansions over GF(2). %K A011738 nonn %O A011738 0,1 %A A011738 _N. J. A. Sloane_