This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A011945 #52 Feb 16 2025 08:32:32 %S A011945 0,6,84,1170,16296,226974,3161340,44031786,613283664,8541939510, %T A011945 118973869476,1657092233154,23080317394680,321467351292366, %U A011945 4477462600698444,62363009058485850,868604664218103456,12098102289994962534,168504827395711372020,2346969481249964245746 %N A011945 Areas of almost-equilateral Heronian triangles (integral side lengths m-1, m, m+1 and integral area). %C A011945 Corresponding m's are in A016064. Corresponding values of lesser side give A016064. %H A011945 Vincenzo Librandi, <a href="/A011945/b011945.txt">Table of n, a(n) for n = 1..890</a> %H A011945 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a> %H A011945 E. Keith Lloyd, <a href="http://www.jstor.org/stable/3619201">The Standard Deviation of 1, 2,..., n: Pell's Equation and Rational Triangles</a>, Math. Gaz. vol 81 (1997), 231-243. %H A011945 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HeronianTriangle.html">Heronian Triangle</a> %H A011945 Wikipedia, <a href="https://en.wikipedia.org/wiki/Heronian_triangle">Heronian triangle</a> %H A011945 P. Yiu, <a href="http://math.fau.edu/yiu/RecreationalMathematics2003.pdf">Heron triangles with consecutive sides</a>, Recreational Mathematics, Chap. 9.3, pp. 80/360. (This is a download of 360 pages.) %H A011945 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (14,-1). %F A011945 s(n) = floor((a+1)/4)*sqrt(3*(a+3)*(a-1)), where a = A016064(n). - _Zak Seidov_, Feb 23 2005 %F A011945 a(n) = 14*a(n-1) - a(n-2); a(1) = 0, a(2) = 6. %F A011945 G.f.: 6*x^2/(1 - 14*x + x^2). - _Philippe Deléham_, Nov 17 2008 %F A011945 a(n) = (s/4)*((7 + 4*s)^n - (7 - 4*s)^n), where s = sqrt(3). - _Zak Seidov_, Apr 02 2014 %F A011945 E.g.f.: 6 - exp(7*x)*(12*cosh(4*sqrt(3)*x) - 7*sqrt(3)*sinh(4*sqrt(3)*x))/2. - _Stefano Spezia_, Dec 12 2022 %t A011945 CoefficientList[Series[6 x/(1 - 14 x + x^2), {x, 0, 30}], x] (* _Vincenzo Librandi_, Oct 15 2013 *) %t A011945 LinearRecurrence[{14,-1},{0,6},20] (* _Harvey P. Dale_, Jan 24 2015 *) %Y A011945 Equals 6 * A007655(n+1). %Y A011945 Cf. this sequence (areas), A334277 (perimeters). %Y A011945 Cf. A003500 (middle side lengths), A016064 (smallest side lengths), A335025 (largest side lengths). %Y A011945 Cf. A102341, A103974, A103975. %K A011945 nonn,easy %O A011945 1,2 %A A011945 E. K. Lloyd %E A011945 Entry revised by _N. J. A. Sloane_, Feb 03 2007