cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A011951 Number of Barlow packings with group P3(bar)m1(S) that repeat after 2n layers.

This page as a plain text file.
%I A011951 #21 Jul 08 2025 02:43:24
%S A011951 0,0,0,0,2,3,9,16,39,75,165,318,672,1323,2703,5376,10880,21663,43605,
%T A011951 87040,174564,348843,698709,1396680,2795518,5589675,11183325,22364160,
%U A011951 44736512,89467320,178951509,357892096,715816464,1431612075,2863289674,5726534688,11453202432
%N A011951 Number of Barlow packings with group P3(bar)m1(S) that repeat after 2n layers.
%H A011951 J. E. Iglesias, <a href="https://doi.org/10.1524/zkri.2006.221.4.237">Enumeration of closest-packings by the space group: a simple approach</a>, Z. Krist. 221 (2006) 237-245, eq (24).
%H A011951 T. J. McLarnan, <a href="http://dx.doi.org/10.1524/zkri.1981.155.3-4.269">The numbers of polytypes in close packings and related structures</a>, Zeits. Krist. 155, 269-291 (1981).
%p A011951 # eq (6) in Iglesias Z Krist. 221 (2006)
%p A011951 b := proc(p,q)
%p A011951     local d;
%p A011951     a := 0 ;
%p A011951     for d from 1 to min(p,q) do
%p A011951         if modp(p,d)=0 and modp(q,d)=0 then
%p A011951             ph := floor(p/2/d) ;
%p A011951             qh := floor(q/2/d) ;
%p A011951             a := a+numtheory[mobius](d)*binomial(ph+qh,ph) ;
%p A011951         end if ;
%p A011951     end do:
%p A011951     a ;
%p A011951 end proc:
%p A011951 # eq (17) in Iglesias Z Krist. 221 (2006)
%p A011951 bt := proc(p,q)
%p A011951     if type(p+q,'odd') then
%p A011951         b(p,q) ;
%p A011951     else
%p A011951         0;
%p A011951     end if;
%p A011951 end proc:
%p A011951 # corrected eq (15) in Iglesias Z Krist. 221 (2006),  d|(p/2) and d|(q/2)
%p A011951 bbtemp := proc(p,q)
%p A011951     local d,ph,qh;
%p A011951     a := 0 ;
%p A011951     for d from 1 to min(p,q) do
%p A011951         if modp(p,2*d)=0 and modp(q,2*d)=0 then
%p A011951             ph := p/2/d ;
%p A011951             qh := q/2/d ;
%p A011951             a := a+numtheory[mobius](d)*binomial(ph+qh,ph) ;
%p A011951         end if ;
%p A011951     end do:
%p A011951     a ;
%p A011951 end proc:
%p A011951 # eq (16) in Iglesias Z Krist. 221 (2006)
%p A011951 bb := proc(p,q)
%p A011951     if type(p,'even') and type(q,'even') then
%p A011951         ( bbtemp(p,q)-bt(p/2,q/2) )/2 ;
%p A011951     else
%p A011951         0 ;
%p A011951     end if;
%p A011951 end proc:
%p A011951 # eq (25) in Iglesias Z Krist. 221 (2006)
%p A011951 FracR := proc(Phalf)
%p A011951     if type(Phalf,'even') then
%p A011951         (bb(Phalf,Phalf)-A045683(Phalf))/2 ;
%p A011951     else
%p A011951         0;
%p A011951     end if;
%p A011951 end proc:
%p A011951 # eq (24) in Iglesias Z Krist. 221 (2006)
%p A011951 A011951 := proc(n)
%p A011951     local a,p,q,P ;
%p A011951     P := 2*n ;
%p A011951     a := FracR(P/2) ;
%p A011951     for q from 0 to P do
%p A011951         p := P-q ;
%p A011951         if modp(p-q,3) = 0 and p < q then
%p A011951             a := a+bb(p,q) ;
%p A011951         end if;
%p A011951     end do:
%p A011951     a ;
%p A011951 end proc:
%p A011951 seq(A011951(n),n=1..40 ) ; # _R. J. Mathar_, Apr 15 2024
%o A011951 (PARI) apply( {A011951(n)=my(P=2*n, b(p, q, f=1)=sum(d=1, min(p, q), if(p%(d*f)+q%(d*f)==0, moebius(d)*binomial(q\2\d+p\2\d, p\2\d))), bb(p,q)=if(p%2+q%2==0, b(p,q,2)-if((p+q)%4, b(p/2,q/2)))); sum(q=n+1, P, if(q%2==0 && (n-q)*2%3==0, bb(P-q,q)),if(n%2==0,bb(n,n)/2-A045683(n)))/2}, [1..44]) \\ _M. F. Hasler_, Jun 03 2025
%K A011951 nonn,easy
%O A011951 1,5
%A A011951 _N. J. A. Sloane_
%E A011951 More terms from _Sean A. Irvine_, May 26 2025