This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A011951 #21 Jul 08 2025 02:43:24 %S A011951 0,0,0,0,2,3,9,16,39,75,165,318,672,1323,2703,5376,10880,21663,43605, %T A011951 87040,174564,348843,698709,1396680,2795518,5589675,11183325,22364160, %U A011951 44736512,89467320,178951509,357892096,715816464,1431612075,2863289674,5726534688,11453202432 %N A011951 Number of Barlow packings with group P3(bar)m1(S) that repeat after 2n layers. %H A011951 J. E. Iglesias, <a href="https://doi.org/10.1524/zkri.2006.221.4.237">Enumeration of closest-packings by the space group: a simple approach</a>, Z. Krist. 221 (2006) 237-245, eq (24). %H A011951 T. J. McLarnan, <a href="http://dx.doi.org/10.1524/zkri.1981.155.3-4.269">The numbers of polytypes in close packings and related structures</a>, Zeits. Krist. 155, 269-291 (1981). %p A011951 # eq (6) in Iglesias Z Krist. 221 (2006) %p A011951 b := proc(p,q) %p A011951 local d; %p A011951 a := 0 ; %p A011951 for d from 1 to min(p,q) do %p A011951 if modp(p,d)=0 and modp(q,d)=0 then %p A011951 ph := floor(p/2/d) ; %p A011951 qh := floor(q/2/d) ; %p A011951 a := a+numtheory[mobius](d)*binomial(ph+qh,ph) ; %p A011951 end if ; %p A011951 end do: %p A011951 a ; %p A011951 end proc: %p A011951 # eq (17) in Iglesias Z Krist. 221 (2006) %p A011951 bt := proc(p,q) %p A011951 if type(p+q,'odd') then %p A011951 b(p,q) ; %p A011951 else %p A011951 0; %p A011951 end if; %p A011951 end proc: %p A011951 # corrected eq (15) in Iglesias Z Krist. 221 (2006), d|(p/2) and d|(q/2) %p A011951 bbtemp := proc(p,q) %p A011951 local d,ph,qh; %p A011951 a := 0 ; %p A011951 for d from 1 to min(p,q) do %p A011951 if modp(p,2*d)=0 and modp(q,2*d)=0 then %p A011951 ph := p/2/d ; %p A011951 qh := q/2/d ; %p A011951 a := a+numtheory[mobius](d)*binomial(ph+qh,ph) ; %p A011951 end if ; %p A011951 end do: %p A011951 a ; %p A011951 end proc: %p A011951 # eq (16) in Iglesias Z Krist. 221 (2006) %p A011951 bb := proc(p,q) %p A011951 if type(p,'even') and type(q,'even') then %p A011951 ( bbtemp(p,q)-bt(p/2,q/2) )/2 ; %p A011951 else %p A011951 0 ; %p A011951 end if; %p A011951 end proc: %p A011951 # eq (25) in Iglesias Z Krist. 221 (2006) %p A011951 FracR := proc(Phalf) %p A011951 if type(Phalf,'even') then %p A011951 (bb(Phalf,Phalf)-A045683(Phalf))/2 ; %p A011951 else %p A011951 0; %p A011951 end if; %p A011951 end proc: %p A011951 # eq (24) in Iglesias Z Krist. 221 (2006) %p A011951 A011951 := proc(n) %p A011951 local a,p,q,P ; %p A011951 P := 2*n ; %p A011951 a := FracR(P/2) ; %p A011951 for q from 0 to P do %p A011951 p := P-q ; %p A011951 if modp(p-q,3) = 0 and p < q then %p A011951 a := a+bb(p,q) ; %p A011951 end if; %p A011951 end do: %p A011951 a ; %p A011951 end proc: %p A011951 seq(A011951(n),n=1..40 ) ; # _R. J. Mathar_, Apr 15 2024 %o A011951 (PARI) apply( {A011951(n)=my(P=2*n, b(p, q, f=1)=sum(d=1, min(p, q), if(p%(d*f)+q%(d*f)==0, moebius(d)*binomial(q\2\d+p\2\d, p\2\d))), bb(p,q)=if(p%2+q%2==0, b(p,q,2)-if((p+q)%4, b(p/2,q/2)))); sum(q=n+1, P, if(q%2==0 && (n-q)*2%3==0, bb(P-q,q)),if(n%2==0,bb(n,n)/2-A045683(n)))/2}, [1..44]) \\ _M. F. Hasler_, Jun 03 2025 %K A011951 nonn,easy %O A011951 1,5 %A A011951 _N. J. A. Sloane_ %E A011951 More terms from _Sean A. Irvine_, May 26 2025