This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A011952 #13 Jul 08 2025 02:43:30 %S A011952 2,3,8,16,40,73,165,320,666,1323,2709,5364,10880,21675,43577,87040, %T A011952 174590,348787,698709,1396736,2795400,5589672,11183445,22363920, %U A011952 44736510,89467563,178951005,357892096,715816960,1431611083,2863289685,5726535661,11453200416 %N A011952 Number of Barlow packings with group P3(bar)m1(O) that repeat after 2n layers. %H A011952 J. E. Iglesias, <a href="https://doi.org/10.1524/zkri.2006.221.4.237">Enumeration of closest-packings by the space group: a simple approach</a>, Z. Krist. 221 (2006) 237-245 %H A011952 T. J. McLarnan, <a href="http://dx.doi.org/10.1524/zkri.1981.155.3-4.269">The numbers of polytypes in close packings and related structures</a>, Zeits. Krist. 155, 269-291 (1981) %p A011952 # eq (6) in Iglesias Z Krist. 221 (2006) %p A011952 b := proc(p,q) %p A011952 local d; %p A011952 a := 0 ; %p A011952 for d from 1 to min(p,q) do %p A011952 if modp(p,d)=0 and modp(q,d)=0 then %p A011952 ph := floor(p/2/d) ; %p A011952 qh := floor(q/2/d) ; %p A011952 a := a+numtheory[mobius](d)*binomial(ph+qh,ph) ; %p A011952 end if ; %p A011952 end do: %p A011952 a ; %p A011952 end proc: %p A011952 # eq (17) in Iglesias Z Krist. 221 (2006) %p A011952 bt := proc(p,q) %p A011952 if type(p+q,'odd') then %p A011952 b(p,q) ; %p A011952 else %p A011952 0; %p A011952 end if; %p A011952 end proc: %p A011952 # corrected eq (15) in Iglesias Z Krist. 221 (2006), d|(p/2) and d|(q/2) %p A011952 bbtemp := proc(p,q) %p A011952 local d,ph,qh; %p A011952 a := 0 ; %p A011952 for d from 1 to min(p,q) do %p A011952 if modp(p,2*d)=0 and modp(q,2*d)=0 then %p A011952 ph := p/2/d ; %p A011952 qh := q/2/d ; %p A011952 a := a+numtheory[mobius](d)*binomial(ph+qh,ph) ; %p A011952 end if ; %p A011952 end do: %p A011952 a ; %p A011952 end proc: %p A011952 # eq (16) in Iglesias Z Krist. 221 (2006) %p A011952 bb := proc(p,q) %p A011952 if type(p,'even') and type(q,'even') then %p A011952 ( bbtemp(p,q)-bt(p/2,q/2) )/2 ; %p A011952 else %p A011952 0 ; %p A011952 end if; %p A011952 end proc: %p A011952 tt := proc(p,q) %p A011952 if type(p+q,'odd') then %p A011952 0 ; %p A011952 else %p A011952 b(p,q)-bb(p,q); %p A011952 end if; %p A011952 end proc: %p A011952 # eq (28) in Iglesias Z Krist. 221 (2006) %p A011952 FracS := proc(Phalf) %p A011952 if type(Phalf,'even') then %p A011952 tt(Phalf,Phalf)/2 ; %p A011952 else %p A011952 (tt(Phalf,Phalf)-A045683(Phalf))/2 ; %p A011952 end if; %p A011952 end proc: %p A011952 # eq (27) %p A011952 A011952 := proc(n) %p A011952 local a,p,q,P ; %p A011952 P := 2*n ; %p A011952 if type(P,'even') then %p A011952 a := FracS(P/2) ; %p A011952 for q from 0 to P do %p A011952 p := P-q ; %p A011952 if modp(p-q,3) = 0 and p < q then %p A011952 a := a+tt(p,q) ; %p A011952 end if; %p A011952 end do: %p A011952 a ; %p A011952 else %p A011952 0; %p A011952 end if; %p A011952 end proc: %p A011952 seq(A011952(n),n=4..40) ;# _R. J. Mathar_, Apr 15 2024 %K A011952 nonn,easy %O A011952 4,1 %A A011952 _N. J. A. Sloane_ %E A011952 More terms from _Sean A. Irvine_, May 26 2025