A011954 Barlow packings with group R3(bar)m(SO) that repeat after 6n+3 layers.
1, 1, 2, 4, 11, 20, 42, 84, 170, 340, 682, 1364, 2728, 5461, 10922, 21844, 43690, 87374, 174762, 349524, 699050, 1398100, 2796192, 5592404, 11184806, 22369620, 44739242, 89478462, 178956970, 357913940, 715827882, 1431655754, 2863311486, 5726623060, 11453246122, 22906492244, 45812984490
Offset: 0
Links
- J. E. Iglesias, Enumeration of closest-packings by the space group: a simple approach, Z. Krist. 221 (2006) 237-245.
- T. J. McLarnan, The numbers of polytypes in close packings and related structures, Zeits. Krist. 155, 269-291 (1981).
Programs
-
Maple
# eq (6) in Iglesias Z Krist. 221 (2006) b := proc(p,q) local d; a := 0 ; for d from 1 to min(p,q) do if modp(p,d)=0 and modp(q,d)=0 then ph := floor(p/2/d) ; qh := floor(q/2/d) ; a := a+numtheory[mobius](d)*binomial(ph+qh,ph) ; end if ; end do: a ; end proc: # eq (17) in Iglesias Z Krist. 221 (2006) bt := proc(p,q) if type(p+q,'odd') then b(p,q); else 0; # never happens since p+q = P = 2n+1. - M. F. Hasler, May 27 2025 end if; end proc: # eq (31) in Iglesias Z Krist. 221 (2006) A011954 := proc(n) local a,P,p,q ; if n = 0 then 1; else P := 2*n+1 ; a :=0 ; for q from 0 to P do p := P-q ; if modp(p-q,3) <> 0 and p < q then a := a+bt(p,q) ; end if; end do: a ; end if; end proc: seq(A011954(n),n=0..40) ; # R. J. Mathar, Apr 15 2024
-
PARI
apply( {A011954(n)=if(n, my(P=2*n+1, b(p,q)=sum(d=1, min(p,q), if(!(p%d || q%d), moebius(d)*binomial(q\d\2+p\d\2, p\d\2)))); sum(q=P\/2,P, if((P-q*2)%3, b(P-q, q))),1)}, [0..33]) \\ M. F. Hasler, May 27 2025