This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A011955 #19 Jul 08 2025 02:43:49 %S A011955 1,2,4,9,19,40,80,165,330,672,1344,2709,5418,10878,21760,43605,87211, %T A011955 174592,349180,698707,1397418,2795520,5591040,11183436,22366890, %U A011955 44736512,89473020,178951509,357903000,715816960,1431633920,2863289683,5726579370,11453202383,22906404864,45812897109,91625794218 %N A011955 Number of Barlow packings with group R3(bar)m(O) that repeat after 6n layers. %H A011955 J. E. Iglesias, <a href="https://doi.org/10.1524/zkri.2006.221.4.237">Enumeration of closest-packings by the space group: a simple approach</a>, Z. Krist. 221 (2006) 237-245. %H A011955 T. J. McLarnan, <a href="http://dx.doi.org/10.1524/zkri.1981.155.3-4.269">The numbers of polytypes in close packings and related structures</a>, Zeits. Krist. 155, 269-291 (1981). %p A011955 # eq (6) in Iglesias Z Krist. 221 (2006) %p A011955 b := proc(p,q) %p A011955 local d; %p A011955 a := 0 ; %p A011955 for d from 1 to min(p,q) do %p A011955 if modp(p,d)=0 and modp(q,d)=0 then %p A011955 ph := floor(p/2/d) ; %p A011955 qh := floor(q/2/d) ; %p A011955 a := a+numtheory[mobius](d)*binomial(ph+qh,ph) ; %p A011955 end if ; %p A011955 end do: %p A011955 a ; %p A011955 end proc: %p A011955 # eq (17) in Iglesias Z Krist. 221 (2006) %p A011955 bt := proc(p,q) %p A011955 if type(p+q,'odd') then %p A011955 b(p,q) ; %p A011955 else %p A011955 0; %p A011955 end if; %p A011955 end proc: %p A011955 # corrected eq (15) in Iglesias Z Krist. 221 (2006), d|(p/2) and d|(q/2) %p A011955 bbtemp := proc(p,q) %p A011955 local d,ph,qh; %p A011955 a := 0 ; %p A011955 for d from 1 to min(p,q) do %p A011955 if modp(p,2*d)=0 and modp(q,2*d)=0 then %p A011955 ph := p/2/d ; %p A011955 qh := q/2/d ; %p A011955 a := a+numtheory[mobius](d)*binomial(ph+qh,ph) ; %p A011955 end if ; %p A011955 end do: %p A011955 a ; %p A011955 end proc: %p A011955 # eq (16) in Iglesias Z Krist. 221 (2006) %p A011955 bb := proc(p,q) %p A011955 if type(p,'even') and type(q,'even') then %p A011955 ( bbtemp(p,q)-bt(p/2,q/2) )/2 ; %p A011955 else %p A011955 0 ; %p A011955 end if; %p A011955 end proc: %p A011955 tt := proc(p,q) %p A011955 if type(p+q,'odd') then %p A011955 0 ; %p A011955 else # p+q = 2n (below) is always even. - _M. F. Hasler_, May 27 2025 %p A011955 b(p,q)-bb(p,q); %p A011955 end if; %p A011955 end proc: %p A011955 # eq (29) in Iglesias %p A011955 A011955 := proc(n) %p A011955 local a,p,q,P ; %p A011955 P := 2*n ; %p A011955 a :=0 ; %p A011955 for q from 0 to P do %p A011955 p := P-q ; %p A011955 if modp(p-q,3) <> 0 and p < q then %p A011955 a := a+tt(p,q) ; %p A011955 end if; %p A011955 end do: %p A011955 a ; %p A011955 end proc: %p A011955 seq(A011955(n),n=2..40) ; # _R. J. Mathar_, Apr 15 2024 %o A011955 (PARI) apply( {A011955(n)=my(P=2*n, b(p, q, f=1)=sum(d=1, min(p, q), if(p%(d*f)+q%(d*f)==0, moebius(d)*binomial(q\d\2+p\d\2, p\d\2)))); sum(q=n+1, 2*n, if(2*(n-q)%3, b(2*n-q, q)-if(q%2==0, b(2*n-q, q, 2)-if(n%2,b(n-q/2,q/2)))/2))}, [2..35]) \\ _M. F. Hasler_, May 27 2025 %K A011955 nonn,easy %O A011955 2,2 %A A011955 _N. J. A. Sloane_