A011956 Number of close-packings with layer-number 3n and space group R3m.
1, 2, 4, 10, 21, 42, 84, 164, 322, 620, 1200, 2300, 4429, 8482, 16303, 31259, 60105, 115472, 222332, 428106, 825774, 1593669, 3080004, 5956902, 11534689, 22352962, 43361663, 84181720, 163574114, 318079104, 619007004, 1205471654, 2349209058, 4581032192
Offset: 7
Links
- Juan E. Iglesias, Enumeration of closest-packings by the space group: a simple approach, Z. Krist. 221 (2006) 237-245. See Table 4.
- T. J. McLarnan, The numbers of polytypes in close-packings and related structures, Zeits. Krist. 155, 269-291 (1981).
- Eric W. Weisstein, Barlow Packing, on MathWorld-A Wolfram Web Resource.
- Wikipedia, Close-packing of equal spheres.
Programs
-
Mathematica
fa[p_, q_] := fa[p, q] = (p+q-1)!/(p!q!) - Sum[fa[p/d, q/d]/d, {d, Rest[Intersection@@(Divisors/@{p, q})]}]; fb[p_, q_] := fb[p, q] = (Quotient[p, 2]+Quotient[q, 2])!/(Quotient[p, 2]!Quotient[q, 2]!) - Sum[fb[p/d, q/d], {d, Rest[Intersection@@(Divisors/@{p, q})]}]; rh[n_] := Sum[fa[n-q, q]+fb[n-q, q], {q, Select[Range[n/2], !Divisible[n-2#, 3]&]}] / 2; (* A371992 *) fSO[n_] := Sum[fb[2n+1-q,q], {q, Select[Range[n+1,2n], !Divisible[2n+1-2#,3]&]}];(*A011954*) fb2[p_, q_] := fb2[p, q] = (p+q)!/(p!q!) - Sum[fb2[p/d, q/d], {d, Rest[Intersection@@(Divisors/@{p, q})]}]; (*A050186(p+q, p)*) fO[n_] := Sum[fb[2n-q, q] - If[EvenQ@q, fb2[n-q/2, q/2] - If[OddQ@n, fb[n-q/2, q/2], 0], 0] / 2, {q, Select[Range[n+1, 2n-1], !Divisible[n-#, 3]&]}]; (*A011955*) a[n_] := rh[n] - If[OddQ@n, fSO[(n-1)/2], fO[n/2]+fO[n/2-1]]; Table[a[n],{n,7,50}] (* Andrei Zabolotskii, May 30 2025 *)
-
PARI
apply( {A011956(n) = A371992(n) - if(n%2,A011954(n\2), A011955(n/2)+A011955(n/2-1))}, [7..20]) \\ M. F. Hasler, May 27 2025
-
Python
def A011956(n): return A371992(n) - (A011954(n//2) if n&1 else A011955(n//2)+A011955(n//2-1)) # M. F. Hasler, May 27 2025
Formula
a(n) = A371992(n) - A011954((n-1)/2) - A011955(n/2) - A011955(n/2-1), where the terms with non-integer indices are set to 0. - Andrei Zabolotskii and M. F. Hasler, May 27 2025
Extensions
Name and offset corrected by Andrei Zabolotskii, Feb 14 2024
Name changed by M. F. Hasler, May 26 2025
Terms a(17) onwards from Andrei Zabolotskii, May 30 2025
Comments