cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A011968 Apply (1+Shift) to Bell numbers.

This page as a plain text file.
%I A011968 #85 Feb 13 2025 01:30:09
%S A011968 1,2,3,7,20,67,255,1080,5017,25287,137122,794545,4892167,31858034,
%T A011968 218543759,1573857867,11863100692,93345011951,764941675963,
%U A011968 6514819011216,57556900440429,526593974392123,4981585554604074,48658721593531669,490110875149889635
%N A011968 Apply (1+Shift) to Bell numbers.
%C A011968 Number of set partitions of n+2 with at least one singleton and the smallest element in any singleton is exactly n. The maximum number of singletons is therefore 3. Alternatively, number of set partitions of n+2 with at least one singleton and the largest element in any singleton is exactly 3 (or n+2 if n+2 < 3). For example, a(3)=7 counts the following set partitions of [5]: {1245, 3}, {12, 3, 45}, {124, 3, 5}, {15, 24, 3}, {125, 3, 4}, {14, 25, 3}, {12, 3, 4, 5}. - _Olivier Gérard_, Oct 29 2007
%C A011968 Let V(N)={v(1),v(2),...,v(N)} denote an ordered set of increasing positive integers containing a pair of adjacent elements that differ by at least 2, that is, v(i),v(i+1) with v(i+1)-v(i) > 1. Then for n > 0, a(n) is the number of partitions of V(n+1) into blocks of nonconsecutive integers. - _Augustine O. Munagi_, Jul 17 2008
%D A011968 Olivier Gérard and Karol Penson, A budget of set partitions statistics, in preparation, unpublished as of Sep 22 2011
%H A011968 Chai Wah Wu, <a href="/A011968/b011968.txt">Table of n, a(n) for n = 0..500</a> n = 0..200 from Vincenzo Librandi.
%H A011968 Cohn, Martin; Even, Shimon; Menger, Karl, Jr.; Hooper, Philip K.; <a href="http://www.jstor.org/stable/2310780">On the Number of Partitionings of a Set of n Distinct Objects</a>, Amer. Math. Monthly 69 (1962), no. 8, 782--785. MR1531841.
%H A011968 Cohn, Martin; Even, Shimon; Menger, Karl, Jr.; Hooper, Philip K.; <a href="/A011965/a011965.pdf">On the Number of Partitionings of a Set of n Distinct Objects</a>, Amer. Math. Monthly 69 (1962), no. 8, 782--785. MR1531841. [Annotated scanned copy]
%H A011968 Augustine O. Munagi, <a href="http://dx.doi.org/10.1016/j.ejc.2007.06.003">Extended set partitions with successions</a>, European J. Combin. 29(5) (2008), 1298--1308.
%H A011968 Jocelyn Quaintance and Harris Kwong, <a href="http://www.emis.de/journals/INTEGERS/papers/n29/n29.Abstract.html">A combinatorial interpretation of the Catalan and Bell number difference tables</a>, Integers, 13 (2013), #A29.
%F A011968 For n >= 1, a(n+1) = exp(-1)*Sum_{k>=0} ((k+1)/k!)*k^n. - _Benoit Cloitre_, Mar 09 2008
%F A011968 For n >= 1, a(n) = Bell(n) + Bell(n-1). - _Augustine O. Munagi_, Jul 17 2008
%F A011968 G.f.: G(0) where G(k) = 1 - 2*x*(k+1)/((2*k+1)*(2*x*k-1) - x*(2*k+1)*(2*k+3)*(2*x*k-1)/(x*(2*k+3) - 2*(k+1)*(2*x*k+x-1)/G(k+1) )); (recursively defined continued fraction). - _Sergei N. Gladkovskii_, Dec 19 2012
%F A011968 G.f.: 1 + x*E(0) where E(k) = 1 + 1/(1-x*k-x)/(1-x/(x+1/E(k+1) )); (recursively defined continued fraction). - _Sergei N. Gladkovskii_, Jan 20 2013
%F A011968 G.f.: 1 + Sum_{k>=0} ( 1+1/(1-x-x*k) )*x^(k+1)/Product_{i=0..k} (1-x*i). - _Sergei N. Gladkovskii_, Jan 20 2013
%F A011968 a(n) ~ Bell(n) * (1 + LambertW(n)/n). - _Vaclav Kotesovec_, Jul 28 2021
%e A011968 a(3)=7 because the set {1,3,4,5} has 7 different partitions into blocks of nonconsecutive integers: 14/35, 135/4, 1/35/4, 13/4/5, 14/3/5, 15/3/4, 1/3/4/5.
%p A011968 with(combinat): seq(`if`(n>0,bell(n)+bell(n-1),1),n=0..21); # _Augustine O. Munagi_, Jul 17 2008
%o A011968 (Python)
%o A011968 # requires python 3.2 or higher. Otherwise use def'n of accumulate in python docs.
%o A011968 from itertools import accumulate
%o A011968 A011968_list, blist, b = [1,2], [1], 1
%o A011968 for _ in range(10**2):
%o A011968     blist = list(accumulate([b]+blist))
%o A011968     A011968_list.append(b+blist[-1])
%o A011968     b = blist[-1] # _Chai Wah Wu_, Sep 02 2014, updated _Chai Wah Wu_, Sep 20 2014
%Y A011968 Cf. A000110, A000296, A011969, A011970.
%Y A011968 A diagonal of A011971 and A106436. - _N. J. A. Sloane_, Jul 31 2012
%Y A011968 Cf. A000569, A240936, A321750.
%K A011968 nonn
%O A011968 0,2
%A A011968 _N. J. A. Sloane_