This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A011972 #30 Dec 02 2023 05:09:49 %S A011972 1,2,3,5,7,10,15,20,27,37,52,67,87,114,151,203,255,322,409,523,674, %T A011972 877,1080,1335,1657,2066,2589,3263,4140,5017,6097,7432,9089,11155, %U A011972 13744,17007,21147,25287,30304,36401,43833,52922,64077,77821,94828 %N A011972 Sequence formed by reading rows of triangle defined in A011971. %C A011972 Terms that are repeated in A011971 are included only once. In other words, dropping the elements on the diagonal and reading by rows gives this sequence. [_Joerg Arndt_, May 31 2013] %H A011972 Chai Wah Wu, <a href="/A011972/b011972.txt">Rows n = 0..200, flattened</a> %e A011972 Triangle T(n, k) begins: %e A011972 [0] 1; %e A011972 [1] 2, 3; %e A011972 [2] 5, 7, 10; %e A011972 [3] 15, 20, 27, 37; %e A011972 [4] 52, 67, 87, 114, 151; %e A011972 [5] 203, 255, 322, 409, 523, 674; %e A011972 [6] 877, 1080, 1335, 1657, 2066, 2589, 3263; %e A011972 ... %p A011972 T := (n, k) -> local i; add(binomial(k, i)*combinat:-bell(n - k + i + 1), i = 0..k): seq(seq(T(n, k), k=0..n), n = 0..9); # _Peter Luschny_, Dec 02 2023 %t A011972 T[n_, k_] := Sum[Binomial[k, i] BellB[n - k + i + 1], {i, 0, k}]; %t A011972 Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Nov 19 2019 *) %o A011972 (Python) %o A011972 from itertools import accumulate %o A011972 A011972_list = blist = [1] %o A011972 for _ in range(10**2): %o A011972 b = blist[-1] %o A011972 blist = list(accumulate([b]+blist)) %o A011972 A011972_list += blist[1:] %o A011972 # _Chai Wah Wu_, Sep 02 2014, updated _Chai Wah Wu_, Sep 20 2014 %K A011972 nonn,easy,tabl %O A011972 0,2 %A A011972 _N. J. A. Sloane_ and _J. H. Conway_