cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A012781 Take every 5th term of Padovan sequence A000931, beginning with the second term.

This page as a plain text file.
%I A012781 #56 Sep 08 2022 08:44:38
%S A012781 0,1,4,16,65,265,1081,4410,17991,73396,299426,1221537,4983377,
%T A012781 20330163,82938844,338356945,1380359512,5631308624,22973462017,
%U A012781 93722435101,382349636061,1559831901918,6363483400447,25960439030624
%N A012781 Take every 5th term of Padovan sequence A000931, beginning with the second term.
%C A012781 Number of nonisomorphic graded posets with 0 and uniform hasse graph of rank n, with exactly 2 elements of each rank level above 0, for n > 0. (Uniform used in the sense of Retakh, Serconek and Wilson.)  Here, we do not assume all maximal elements have maximal rank and thus use graded poset to mean: For every element x, all maximal chains among those with x as greatest element have the same finite length. - _David Nacin_, Feb 13 2012
%D A012781 R. Stanley, Enumerative combinatorics, Vol. 1, Cambridge University Press, Cambridge, 1997, pp. 96-100.
%H A012781 Vincenzo Librandi, <a href="/A012781/b012781.txt">Table of n, a(n) for n = 0..1000</a>
%H A012781 V. Retakh, S. Serconek, and R. Wilson, <a href="http://arxiv.org/abs/1010.6295">Hilbert Series of Algebras Associated to Directed Graphs and Order Homology</a>, arXiv:1010.6295 [math.RA], 2010-2011.
%H A012781 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (5,-4,1).
%F A012781 a(n+3) = 5*a(n+2) - 4*a(n+1) + a(n).
%F A012781 G.f.: x*(1-x)/(1-5*x+4*x^2-x^3). - _Colin Barker_, Feb 03 2012
%t A012781 LinearRecurrence[{5, -4, 1}, {0, 1, 4}, 25] (* _Harvey P. Dale_, Jan 10 2012 *)
%o A012781 (Magma) I:=[0, 1, 4 ]; [n le 3 select I[n] else 5*Self(n-1)-4*Self(n-2)+Self(n-3): n in [1..40]]; // _Vincenzo Librandi_, Feb 03 2012
%o A012781 (Python)
%o A012781 def a(n, adict={0:0, 1:1, 2:4}):
%o A012781     if n in adict:
%o A012781         return adict[n]
%o A012781     adict[n]=5*a(n-1) - 4*a(n-2) + a(n-3)
%o A012781     return adict[n] # _David Nacin_, Feb 27 2012
%K A012781 nonn,easy
%O A012781 0,3
%A A012781 _N. J. A. Sloane_
%E A012781 Initial term 0 added by _Colin Barker_, Feb 03 2012