cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A012814 Take every 5th term of Padovan sequence A000931, beginning with the third term.

This page as a plain text file.
%I A012814 #54 Jul 27 2025 10:39:12
%S A012814 0,1,5,21,86,351,1432,5842,23833,97229,396655,1618192,6601569,
%T A012814 26931732,109870576,448227521,1828587033,7459895657,30433357674,
%U A012814 124155792775,506505428836,2066337330754,8429820731201,34390259761825,140298353215075,572360547759276,2334999585697905
%N A012814 Take every 5th term of Padovan sequence A000931, beginning with the third term.
%H A012814 Vincenzo Librandi, <a href="/A012814/b012814.txt">Table of n, a(n) for n = 0..1000</a>
%H A012814 Ulrich Brenner, Anna Hermann, and Jannik Silvanus, <a href="https://arxiv.org/abs/2012.05550">Constructing Depth-Optimum Circuits for Adders and AND-OR Paths</a>, arXiv:2012.05550 [cs.DM], 2020.
%H A012814 Sela Fried, <a href="https://arxiv.org/abs/2505.14196">Even-up words and their variants</a>, arXiv:2505.14196 [math.CO], 2025. See p. 7.
%H A012814 Taras Goy and Mark Shattuck, <a href="https://doi.org/10.61091/ojac19-01">Toeplitz-Hessenberg determinant formulas for the sequence F_n-1</a>, Online J. Anal. Comb. 19 (2024), no. 19, Paper #1, 27 pp. See Theorem 3.1.
%H A012814 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (5,-4,1).
%F A012814 a(n+3) = 5*a(n+2) - 4*a(n+1) + a(n).
%F A012814 a(n) = A000931(5*n+2).
%F A012814 G.f.: x/(1-5*x+4*x^2-x^3). - _Colin Barker_, Feb 03 2012
%F A012814 a(n) = A012855(n+4) - A012855(n+3).
%e A012814 G.f. = x + 5*x^2 + 21*x^3 + 86*x^4 + 351*x^5 + 1432*x^6 + 5842*x^7 + ...
%t A012814 LinearRecurrence[{5, -4, 1}, {0, 1, 5}, 25] (* _Vincenzo Librandi_, Feb 03 2012 *)
%o A012814 (Magma) I:=[0, 1, 5 ]; [n le 3 select I[n] else 5*Self(n-1)-4*Self(n-2)+Self(n-3): n in [1..40]]; // _Vincenzo Librandi_, Feb 03 2012
%Y A012814 Cf. A000931, A012855.
%K A012814 nonn,easy
%O A012814 0,3
%A A012814 _N. J. A. Sloane_
%E A012814 Initial term 0 added by _Colin Barker_, Feb 03 2012