This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A012853 #16 Apr 23 2014 02:02:50 %S A012853 2,32,15872,44736512,419730685952,9902996106248192, %T A012853 493842960380415967232,46238368375619195682947072, %U A012853 7458815407441059142195019251712,1941965621570118224758799415904305152,775271967544166063656029248004350271291392,455362758259861772977200568672632329207841554432 %N A012853 Expansion of sec(x)^2+sech(x)^2 in powers of x^4. %C A012853 log(sec(x)*cosh(x)) = 2/2!*x^2 + 32/6!*x^6 + 15872/10!*x^10... %F A012853 a(n) = (2^(2*k)) * (2^(2*k)-1) * B(2*k) / k with k = 2*n+1, where Bernoulli numbers B(2*k) = A027641(2*k) / A027642(2*k). That this gives integers follows from von Staudt's theorem. - _Frank Ellermann_, May 14 2001 %F A012853 E.g.f.: sec(x)^2 + sech(x)^2 = Sum_{k>=0} a(k) x^(4k) / (4k)!. - _Michael Somos_, Mar 06 2004 %F A012853 E.g.f.: log(cosh(x) / cos(x)) = Sum_{k>=0} a(k) x^(4k+2) / (4k+2)!. - _Michael Somos_, Feb 05 2011 %F A012853 a(n) = A001250(4*n) if n>0. - _Michael Somos_, Feb 05 2011 %o A012853 (PARI) {a(n) = if( n<0, 0, n=4*n + 2; 2 * (4^n - 2^n) * bernfrac(n) / n)} /* _Michael Somos_, Feb 14 2004 */ %o A012853 (PARI) {a(n) = if( n<0, 0, n*=4; n! * polcoeff( cosh(x + x * O(x^n))^-2 + cos(x + x * O(x^n))^-2, n))} /* _Michael Somos_, Feb 05 2011*/ %K A012853 nonn,easy %O A012853 0,1 %A A012853 Patrick Demichel (patrick.demichel(AT)hp.com) %E A012853 Corrected by _N. J. A. Sloane_, Nov 07 2003