A013574 Minimal scope of an (n,2) difference triangle.
3, 7, 10, 12, 15, 19, 22, 24, 27, 31, 34, 36, 39, 43, 46, 48, 51, 55, 58, 60, 63, 67, 70, 72, 75, 79, 82, 84, 87, 91, 94, 96, 99, 103, 106, 108, 111, 115, 118, 120, 123, 127, 130, 132, 135, 139, 142, 144, 147, 151, 154, 156, 159, 163, 166, 168, 171, 175, 178, 180, 183, 187, 190
Offset: 1
References
- CRC Handbook of Combinatorial Designs, 1996, p. 315.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Y. M. Chee, C. J. Colbourn, Constructions for difference triangle sets, arXiv:0712.2553 [cs.IT], 2007.
- Kival Ngaokrajang, Illustration of irregular spiral (center points: 1, 2, 5, 3, 4)
- J. B. Shearer, Difference Triangle Sets: Known optimal solutions.
- J. B. Shearer, Difference Triangle Sets: Discoverers
- Index entries for linear recurrences with constant coefficients, signature (2,-2,2,-1).
Programs
-
Maple
A013574 := proc(n) if modp(n,4) in {0,1} then 3*n ; else 3*n+1 ; end if; end proc: # R. J. Mathar, Nov 28 2016
-
Mathematica
LinearRecurrence[{2, -2, 2, -1}, {3, 7, 10, 12}, 63] (* Jean-François Alcover, Nov 24 2017 *)
-
PARI
Vec(x*(3 + x + 2*x^2) / ((1 - x)^2*(1 + x^2)) + O(x^40)) \\ Colin Barker, Nov 25 2017
Formula
a(n) = 3n if n = {0,1} (mod 4). a(n) = 3n+1 if n = {2,3} (mod 4). [Chee Theor. 2] - R. J. Mathar, Nov 28 2016
G.f.: x*(3+x+2*x^2) / ( (x^2+1)*(x-1)^2 ). - R. J. Mathar, Nov 28 2016
From Colin Barker, Nov 25 2017: (Start)
a(n) = (-1/4 - i/4) * ((-1+i) + (-i)^n - i*i^n - (6-6*i)*n).
a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4) for n>4.
(End)
Comments