This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A013580 #20 Jul 02 2025 16:01:55 %S A013580 1,1,1,1,3,1,1,4,4,1,1,5,9,5,1,1,6,14,14,6,1,1,7,20,29,20,7,1,1,8,27, %T A013580 49,49,27,8,1,1,9,35,76,99,76,35,9,1,1,10,44,111,175,175,111,44,10,1, %U A013580 1,11,54,155,286,351,286,155,54,11,1,1,12,65,209,441,637,637,441,209,65 %N A013580 Triangle formed in same way as Pascal's triangle (A007318) except 1 is added to central element in even-numbered rows. %C A013580 From _Gus Wiseman_, Apr 19 2023: (Start) %C A013580 Appears to be the number of nonempty subsets of {1,...,n} with median k, where the median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). For example, row n = 5 counts the following subsets: %C A013580 {1} {2} {3} {4} {5} %C A013580 {1,3} {1,5} {3,5} %C A013580 {1,2,3} {2,4} {1,4,5} %C A013580 {1,2,4} {1,3,4} {2,4,5} %C A013580 {1,2,5} {1,3,5} {3,4,5} %C A013580 {2,3,4} %C A013580 {2,3,5} %C A013580 {1,2,4,5} %C A013580 {1,2,3,4,5} %C A013580 Including half-steps gives A231147. %C A013580 For mean instead of median we have A327481. %C A013580 (End) %H A013580 G. C. Greubel, <a href="/A013580/b013580.txt">Table of n, a(n) for the first 50 rows, flattened</a> %F A013580 G.f.: 1/(1-(1+y)*x)/(1-y*x^2). - _Vladeta Jovovic_, Oct 12 2003 %e A013580 Triangle begins: %e A013580 1 %e A013580 1 1 %e A013580 1 3 1 %e A013580 1 4 4 1 %e A013580 1 5 9 5 1 %e A013580 1 6 14 14 6 1 %e A013580 1 7 20 29 20 7 1 %e A013580 1 8 27 49 49 27 8 1 %e A013580 1 9 35 76 99 76 35 9 1 %e A013580 1 10 44 111 175 175 111 44 10 1 %e A013580 1 11 54 155 286 351 286 155 54 11 1 %e A013580 1 12 65 209 441 637 637 441 209 65 12 1 %t A013580 CoefficientList[CoefficientList[Series[1/(1 - (1 + y)*x)/(1 - y*x^2), {x, 0, 10}, {y, 0, 10}], x], y] // Flatten (* _G. C. Greubel_, Oct 10 2017 *) %Y A013580 Row sums give A000975, A054106. %Y A013580 Central diagonal T(2n+1,n+1) appears to be A006134. %Y A013580 Central diagonal T(2n,n) appears to be A079309. %Y A013580 For partitions instead of subsets we have A359901, row sums A325347. %Y A013580 A000975 counts subsets with integer median. %Y A013580 A007318 counts subsets by length, A359893 by twice median. %Y A013580 Cf. A000984, A024718, A057552, A231147, A327475, A327481, A361654. %K A013580 tabl,nonn,easy %O A013580 0,5 %A A013580 Martin Hecko (bigusm(AT)interramp.com) %E A013580 More terms from _James Sellers_