A013584 Smallest m such that 0!+1!+...+(m-1)! is divisible by n, or 0 if no such m exists.
1, 2, 0, 3, 4, 0, 6, 0, 0, 4, 6, 0, 0, 6, 0, 0, 5, 0, 7, 0, 0, 6, 7, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 5, 0, 0, 22, 7, 0, 0, 16, 0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 55, 12, 0, 0, 0, 0, 0, 0, 0, 0, 54, 0, 42, 22, 0, 0, 6, 0, 0, 0, 0, 16, 0, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Keywords
References
- M. R. Mudge, Smarandache Notions Journal, University of Craiova, Vol. VII, No. 1, 1996.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(n) local t,r,m; r:= 1; t:= 1; for m from 1 do r:= r*m mod n; if r = 0 then return 0 fi; t:= t + r mod n; if t = 0 then return m+1 fi; od; end proc: f(1):= 1: map(f, [$1..100]); # Robert Israel, Nov 14 2016
-
Mathematica
a[n_] := Module[{t, r, m}, r = 1; t = 1; For[m = 1, True, m++, r = Mod[r*m, n]; If[r == 0, Return[0]]; t = Mod[t+r, n]; If[t == 0, Return[m+1]]]]; Array[a, 100] (* Jean-François Alcover, Apr 12 2019, after Robert Israel *)
Comments