This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A013587 #82 Jul 25 2025 10:20:29 %S A013587 1,1,12,620,87304,26312976,14616808192,13525751027392, %T A013587 19385778269260800,40739017561997799680,120278021410937387514880, %U A013587 482113680618029292368686080,2551154673732472157928033617920,17410560213476464590484763013222400 %N A013587 Number of rational plane curves of degree d passing through 3d-1 general points. %D A013587 M. Atiyah, On the unreasonable effectiveness of physics in mathematics, in "Highlights of Mathematical Physics", ed. A. S. Fokas, pp. 25ff. %D A013587 D. A. Cox and S. Katz, Mirror Symmetry and Algebraic Geometry, American Mathematical Society, 1999, p. 198. %D A013587 P. DiFranceso and C. Itzykson, Quantum intersection rings, in The Moduli Space of Curves, Birkhäuser, Boston, 1995, pp. 81-148. %D A013587 W. Fulton, Enumerative geometry via quantum cohomology, lecture notes, AMS Summer Institute, Santa Cruz, 1995. %D A013587 Yuri I. Manin, Frobenius Manifolds, Quantum Cohomology and Moduli Spaces, American Mathematical Society, 1999, p. 7. %H A013587 Alois P. Heinz, <a href="/A013587/b013587.txt">Table of n, a(n) for n = 1..169</a> (first 50 terms from T. D. Noe) %H A013587 Aubin Arroyo, Erwan Brugalle and Lucia Lopez de Medrano, <a href="https://arxiv.org/abs/0809.1541">Recursive formulas for Welschinger invariants of the projective plane</a>, arXiv:0809.1541 [math.AG], 2008-2010. See 7.3 p. 16. %H A013587 Andrea Brini, <a href="https://arxiv.org/abs/2211.11037">Enumerative geometry of surfaces and topological strings</a>, arXiv:2211.11037 [math-ph], 2022. %H A013587 Steven R. Finch, <a href="/A013587/a013587.pdf">Enumerative geometry</a>, February 24, 2014. [Cached copy, with permission of the author] %H A013587 Sergey Fomin and Grigory Mikhalkin, <a href="http://arxiv.org/abs/0906.3828">Labeled floor diagrams for plane curves</a>, arXiv:0906.3828 [math.AG], 2009-2010. [From _N. J. A. Sloane_, Sep 27 2010] %H A013587 E. Getzler, <a href="http://www.ams.org/journal-getitem?pii=S0273-0979-00-00888-0">Review of "Frobenius Manifolds, Quantum Cohomology and Moduli Spaces"</a> by Y. I. Manin, Bull. Amer. Math. Soc., 38 (No. 1, 2001), 101-108. %H A013587 Étienne Ghys and Catriona Maclean, <a href="http://images-archive.math.cnrs.fr/Des-equations-geometriques.html">Des équations géométriques</a> - Images des Mathématiques, CNRS, 2013. %H A013587 Daniel B. Grunberg and Pieter Moree, with an Appendix by Don Zagier, <a href="http://arxiv.org/abs/math.NT/0610286">Sequences of enumerative geometry: congruences and asymptotics</a>, arXiv:math/0610286 [math.NT], 2006. %H A013587 M. Kontsevich, <a href="http://dx.doi.org/10.1007/978-1-4612-4264-2_12">Enumeration of rational curves via torus actions</a>, in The Moduli Space of Curves, Birkhäuser, Boston, 1995, 335-368. %H A013587 M. Kontsevich, <a href="https://arxiv.org/abs/hep-th/9405035">Enumeration of rational curves via torus actions</a>, arXiv:hep-th/9405035, 1994-1995. %H A013587 Grigory Mikhalkin, <a href="http://arxiv.org/abs/math/0312530">Enumerative tropical algebraic geometry in R^2</a>, arXiv:math/0312530 [math.AG], 2003-2004. [From _N. J. A. Sloane_, Sep 27 2010] %H A013587 Alexis Roquefeuil, <a href="https://arxiv.org/abs/1911.00254">Confluence of quantum K-theory to quantum cohomology for projective spaces</a>, arXiv:1911.00254 [math.AG], 2019. %H A013587 Ian Strachan, <a href="http://www.maths.gla.ac.uk/~iabs/Visions.pdf">How to count curves: from C. 19 problems to C. 20 solutions</a>, Phil. Trans. Royal Soc. London, A 351 (2003), 2633-2647. %H A013587 Jean-Yves Welschinger, <a href="http://images-archive.math.cnrs.fr/Enumeration-de-fractions.html">Enumération de fractions rationnelles réelles</a>, Images des Mathématiques, CNRS, 2006 (in French). %F A013587 a_d = Sum_{i+j=d} a_i*a_j ( i^2*j^2*binomial(3d-4, 3i-2) - i^3*j*binomial(3d-4, 3i-1) ). %F A013587 a(n) ~ c * d^n * n^(3*n-4), where d = 0.185519180960019376267112252210617741849455736227434091694584922574606814..., c = 8.73503626335165143920583748513754098083091109391517981485640427521559... - _Vaclav Kotesovec_, Apr 28 2024 %e A013587 G.f. = x + x^2 + 12*x^3 + 620*x^4 + 87304*x^5 + 26312976*x^6 + ... %p A013587 a:= proc(d::nonnegint) option remember; if d = 1 then 1 else %p A013587 add(a(k)*a(d-k)*(k^2*(d-k)^2*binomial(3*d-4, 3*k-2)-k^3*(d-k) %p A013587 *binomial(3*d-4, 3*k-1)), k = 1 .. d-1) fi %p A013587 end: %p A013587 seq(a(n), n=1..20); %t A013587 a[n_] := a[n] = Sum[ a[k]*a[n-k]*k^2*(n-k)*(3k-n)*(3n-4)! / (3k-1)! / (3*(n-k)-2)!, {k, 1, n-1}]; a[1] = 1; Table[a[n], {n, 1, 13}] (* _Jean-François Alcover_, Nov 09 2011, after PARI *) %o A013587 (PARI) {a(n) = if( n<2, n>0, sum(k=1, n-1, a(k) * a(n-k) * k^2 * (n-k) * (3*k-n) * (3*n-4)! / ((3*k-1)! * (3*(n-k)-2)!) ))}; /* _Michael Somos_, Dec 11 1999 */ %o A013587 (PARI) %o A013587 N=20; %o A013587 MEM=Vec(1, N); \\ for memoization %o A013587 K(d)= \\ Kontsevich's recursion, see S. Finch link. %o A013587 { %o A013587 my(m = MEM[d]); %o A013587 if ( m, return(m) ); \\ memoized %o A013587 MEM[d] = \\ memoize and return %o A013587 sum(d1=1, d-1, my( d2 = d-d1 ); \\ d1+d2=d, both >= 1 and < d %o A013587 K(d1) * K(d2) * %o A013587 (d1^2 * d2^2 * binomial(3*d-4, 3*d1-2) - %o A013587 d1^3 * d2^1 * binomial(3*d-4, 3*d1-1) ) %o A013587 ); %o A013587 } %o A013587 vector(N, d, K(d) ) %o A013587 \\ _Joerg Arndt_, Feb 26 2014; minor edits by _M. F. Hasler_, Jul 25 2025 %Y A013587 Cf. A319851 (Welschinger invariants). %K A013587 nonn,easy,nice %O A013587 1,3 %A A013587 Gary Kennedy (kennedy(AT)math.ohio-state.edu) %E A013587 Additional terms and references from _Michael Somos_