This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A013597 #35 Dec 02 2024 18:10:56 %S A013597 1,1,1,3,1,5,3,3,1,9,7,5,3,17,27,3,1,29,3,21,7,17,15,9,43,35,15,29,3, %T A013597 11,3,11,15,17,25,53,31,9,7,23,15,27,15,29,7,59,15,5,21,69,55,21,21,5, %U A013597 159,3,81,9,69,131,33,15,135,29,13,131,9,3,33,29,25,11,15,29 %N A013597 a(n) = nextprime(2^n) - 2^n. %C A013597 A013597 and A092131 use different definitions of "nextprime(2)", namely A151800 vs A007918: A013597 assumes nextprime(2) = 3 = A151800(2), whereas A092131 assumes nextprime(2) = 2 = A007918(n). [Edited by _M. F. Hasler_, Sep 09 2015] %C A013597 If (for n>0) a(n)=1, then n is a power of 2 and 2^n+1 is a Fermat prime. n=1,2,4,8,16 are probably the only indices with this property. - _Franz Vrabec_, Sep 27 2005 %C A013597 Conjecture: there are no SierpiĆski numbers in the sequence. See A076336. - _Thomas Ordowski_, Aug 13 2017 %H A013597 T. D. Noe, <a href="/A013597/b013597.txt">Table of n, a(n) for n = 0..5000</a> %H A013597 V. Danilov, <a href="https://web.archive.org/web/20060127010153/http://www.fortunecity.com:80/skyscraper/epson/276/pr1_2k.htm">Table for large n</a> %F A013597 a(n) = A151800(2^n) - 2^n = A013632(2^n). - _R. J. Mathar_, Nov 28 2016 %F A013597 Conjecture: a(n) < n^2/2 for n > 1. - _Thomas Ordowski_, Aug 13 2017 %p A013597 A013597 := proc(n) %p A013597 nextprime(2^n)-2^n ; %p A013597 end proc: %p A013597 seq(A013597(n),n=0..40) ; %t A013597 Table[NextPrime[#] - # &[2^n], {n, 0, 73}] (* _Michael De Vlieger_, Aug 15 2017 *) %o A013597 (PARI) a(n) = nextprime(2^n+1) - 2^n; \\ _Michel Marcus_, Nov 06 2015 %o A013597 (Python) %o A013597 from sympy import nextprime %o A013597 def A013597(n): return nextprime(m:=1<<n)-m # _Chai Wah Wu_, Dec 02 2024 %Y A013597 Cf. A014210, A092131, A007918, A151800. %K A013597 nonn %O A013597 0,4 %A A013597 James Kilfiger (mapdn(AT)csv.warwick.ac.uk)