cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A013629 Floor of imaginary parts of nontrivial zeros of Riemann zeta function.

Original entry on oeis.org

14, 21, 25, 30, 32, 37, 40, 43, 48, 49, 52, 56, 59, 60, 65, 67, 69, 72, 75, 77, 79, 82, 84, 87, 88, 92, 94, 95, 98, 101, 103, 105, 107, 111, 111, 114, 116, 118, 121, 122, 124, 127, 129, 131, 133, 134, 138, 139, 141, 143, 146, 147, 150, 150, 153, 156, 157, 158, 161
Offset: 1

Views

Author

John Morrison (John.Morrison(AT)armltd.co.uk)

Keywords

Examples

			The imaginary parts of the first 4 zeros are 14.134725... (A058303), 21.0220396... (A065434), 25.01085758... (A065452), 30.424876... (A065453). Therefore the sequence starts: 14, 21, 25, 30, ..., as does A002410 (rounded values; main entry). But the 5th, 6th and 7th values are 32.935... (A192492), 37.586... (A305741), 40.9187... (A305742), whence a(n) = A002410(n)-1 and A002410 = A092783 (ceiling) for these. - _M. F. Hasler_, Nov 23 2018
		

References

  • H. M. Edwards, Riemann's Zeta Function, Academic Press, NY, 1974, p. 96.
  • C. B. Haselgrove and J. C. P. Miller, Tables of the Riemann Zeta Function. Royal Society Mathematical Tables, Vol. 6, Cambridge Univ. Press, 1960, p. 58.

Crossrefs

Cf. A002410 (rounded values: main entry), A092783 (ceiling).
Imaginary part of k-th nontrivial zero of Riemann zeta function: A058303 (k=1), A065434 (k=2), A065452 (k=3), A065453 (k=4), A192492 (k=5), A305741 (k=6), A305742 (k=7), A305743 (k=8), A305744 (k=9), A306004 (k=10).

Programs

Formula

a(n) ~ 2*Pi*n/log n. - Charles R Greathouse IV, Jun 30 2011
a(n) ~ (2*Pi*e) * e^(W0(n/e)), where W0 is the principal branch of Lambert's W function. - Hal M. Switkay, Oct 04 2021
a(n) = A092783(n) - 1. - M. F. Hasler, Nov 23 2018

Extensions

Edited by Daniel Forgues, Jun 30 2011
Definition corrected by Jonathan Sondow, Sep 18 2011