This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A013631 #35 Feb 16 2025 08:32:32 %S A013631 1,4,1,18,1,1,1,4,1,9,9,2,1,1,1,2,7,1,1,7,11,1,1,1,3,1,6,1,30,1,4,1,1, %T A013631 4,1,3,1,2,7,1,3,1,2,2,1,16,1,1,3,3,1,2,2,1,6,1,1,1,6,1,1,4,428,5,1,1, %U A013631 3,1,1,11,2,4,4,5,4,1,5,14,1,3,1,2,19,1,2,5,1,7,1,1,1,1,1,57,3,2,14,2 %N A013631 Continued fraction for zeta(3). %H A013631 Harry J. Smith, <a href="/A013631/b013631.txt">Table of n, a(n) for n = 0..19999</a> %H A013631 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/AperysConstant.html">Apery's Constant</a>. %H A013631 G. Xiao, <a href="http://wims.unice.fr/~wims/en_tool~number~contfrac.en.html">Contfrac</a>. %H A013631 <a href="/index/Con#confC">Index entries for continued fractions for constants</a>. %H A013631 <a href="/index/Z#zeta_function">Index entries for zeta function</a>. %e A013631 zeta(3) = 1.2020569031595942... = 1 + 1/(4 + 1/(1 + 1/(18 + 1/(1 + ...)))). - _Harry J. Smith_, Apr 20 2009 %t A013631 ContinuedFraction[ Zeta[3], 100] %o A013631 (PARI) { allocatemem(932245000); default(realprecision, 21000); x=contfrac(zeta(3)); for (n=1, 20000, write("b013631.txt", n-1, " ", x[n])); } \\ _Harry J. Smith_, Apr 20 2009 %Y A013631 Cf. A002117 (decimal expansion), A078984, A078985 (convergents). %Y A013631 Cf. continued fractions for zeta(2)-zeta(20): A013679, A013680-A013696. %K A013631 nonn,cofr,nice %O A013631 0,2 %A A013631 _N. J. A. Sloane_, John Morrison (John.Morrison(AT)armltd.co.uk) %E A013631 Offset changed by _Andrew Howroyd_, Jul 10 2024