This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A013654 #40 Dec 31 2023 21:13:19 %S A013654 2,8,12,24,30,48,56,80,90,120,132,168,182,224,240,288,306,360,380,440, %T A013654 462,528,552,624,650,728,756,840,870,960,992,1088,1122,1224,1260,1368, %U A013654 1406,1520,1560,1680,1722,1848,1892,2024,2070,2208,2256,2400,2450,2600 %N A013654 Positive nonsquare integers k such that each term of the regular continued fraction of sqrt(k) divides k. %C A013654 a(n) = n*(n+1) if n is odd and n*(n+2) if n is even. - _Wesley Ivan Hurt_, Nov 19 2013 %C A013654 From _Rolf Knobel_, Dec 27 2023: (Start) %C A013654 The first term of the continued fraction also divides k since it is half the last term of the periodic part. Except for a(1), the period is 2 (see A013642). - %C A013654 Interleaving of A033996, A002939. Alternating mixture of A005563, A002378. (End) %D A013654 H. Davenport, The Higher Arithmetic. Cambridge Univ. Press, 7th edition, 1999, Table 1. %D A013654 Kenneth H. Rosen, Elementary Number Theory and Its Applications, Addison-Wesley, 1984, page 426 (but beware of errors!). %H A013654 Harvey P. Dale, <a href="/A013654/b013654.txt">Table of n, a(n) for n = 1..1000</a> %H A013654 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,-2,-1,1). %F A013654 a(2n) = 2*(n+1)*(2n), a(2n+1) = 2*(n+1)*(2n+1). - _Frank Ellermann_, Feb 22 2002 %F A013654 G.f.: (-2-6*x)/((x+1)^2*(x-1)^3). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 10 2009 %F A013654 a(n) = n * (n + 1 + (1+(-1)^n)/2). - _Wesley Ivan Hurt_, Nov 19 2013 %p A013654 A013654:=n->n*(n+1+(1+(-1)^n)/2); seq(A013654(n), n=1..100); # _Wesley Ivan Hurt_, Nov 19 2013 %t A013654 Table[n(n+1+(1+(-1)^n)/2), {n,100}] (* _Wesley Ivan Hurt_, Nov 19 2013 *) %t A013654 Table[If[OddQ[n],n(n+1),n(n+2)],{n,50}] (* _Harvey P. Dale_, May 15 2021 *) %Y A013654 Cf. A002378, A002939, A005563, A013642, A033996. %K A013654 nonn,easy %O A013654 1,1 %A A013654 _Clark Kimberling_ %E A013654 More terms from _David W. Wilson_ %E A013654 Name clarified by _Rolf Knobel_, Dec 27 2023