This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A013672 #31 May 02 2020 04:19:48 %S A013672 1,0,0,0,0,6,1,2,4,8,1,3,5,0,5,8,7,0,4,8,2,9,2,5,8,5,4,5,1,0,5,1,3,5, %T A013672 3,3,3,7,4,7,4,8,1,6,9,6,1,6,9,1,5,4,5,4,9,4,8,2,7,5,5,2,0,2,2,5,2,8, %U A013672 6,2,9,4,1,0,2,3,1,7,7,4,2,0,8,7,6,6,5,9,7,8,2,9,7,1,9,9,8,4,6 %N A013672 Decimal expansion of zeta(14). %D A013672 M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811. %H A013672 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. %F A013672 zeta(14) = Sum_{n >= 1} (A010052(n)/n^7) = Sum {n >= 1} ( (floor(sqrt(n))-floor(sqrt(n-1)))/n^7 ). - _Mikael Aaltonen_, Feb 20 2015 %F A013672 zeta(14) = 2/18243225*Pi^14 (see A002432). - _Rick L. Shepherd_, May 30 2016 %F A013672 zeta(14) = Product_{k>=1} 1/(1 - 1/prime(k)^14). - _Vaclav Kotesovec_, May 02 2020 %e A013672 1.0000612481350587048292585451051353337474816961691545494827552022528629... %t A013672 RealDigits[Zeta[14],10,120][[1]] (* _Harvey P. Dale_, Dec 19 2014 *) %o A013672 (PARI) zeta(14) \\ _Michel Marcus_, Feb 20 2015 %K A013672 nonn,cons %O A013672 1,6 %A A013672 _N. J. A. Sloane_