This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A013674 #34 Jun 27 2024 09:13:26 %S A013674 1,0,0,0,0,1,5,2,8,2,2,5,9,4,0,8,6,5,1,8,7,1,7,3,2,5,7,1,4,8,7,6,3,6, %T A013674 7,2,2,0,2,3,2,3,7,3,8,8,9,9,0,4,7,1,5,3,1,1,5,3,1,0,5,2,0,3,5,8,8,7, %U A013674 8,7,0,8,7,0,2,7,9,5,3,1,5,1,7,8,6,2,8,5,6,0,4,8,4,6,3,2,2,4,6 %N A013674 Decimal expansion of zeta(16). %D A013674 Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811. %H A013674 Milton Abramowitz and Irene A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. %F A013674 zeta(16) = Sum_{n >= 1} (A010052(n)/n^8) = sum {n >= 1} ( (floor(sqrt(n))-floor(sqrt(n-1)))/n^8 ). - _Mikael Aaltonen_, Feb 20 2015 %F A013674 zeta(16) = 3617 * Pi^16 / 325641566250. - _Vaclav Kotesovec_, May 15 2019 %F A013674 zeta(16) = Product_{k>=1} 1/(1 - 1/prime(k)^16). - _Vaclav Kotesovec_, May 02 2020 %e A013674 1.000015282259408651871732571487636722... %t A013674 RealDigits[Zeta[16], 10, 96][[1]] (* _Alonso del Arte_, Mar 15 2015 *) %o A013674 (PARI) zeta(16) \\ _Michel Marcus_, Feb 20 2015 %K A013674 cons,nonn %O A013674 1,7 %A A013674 _N. J. A. Sloane_