This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A013680 #30 Jul 09 2024 20:34:27 %S A013680 1,12,6,1,3,1,4,183,1,1,2,1,3,1,1,5,4,2,7,23,1,1,1,1,3,2,4,2,2,22,1, %T A013680 13,5,1,4,2,1,3,1,1,1,6,11,40,1,7,5,2,4,1,2,3,14,9,1,33,78,1,12,4,1,2, %U A013680 551,1,1,1,1,1,1,2,1,9,2,7,3,1,3,2,15,1,1,2,2 %N A013680 Continued fraction for zeta(4). %H A013680 T. D. Noe, <a href="/A013680/b013680.txt">Table of n, a(n) for n = 0..9999</a> %H A013680 G. Xiao, <a href="http://wims.unice.fr/~wims/en_tool~number~contfrac.en.html">Contfrac</a> %H A013680 <a href="/index/Con#confC">Index entries for continued fractions for constants</a> %H A013680 <a href="/index/Z#zeta_function">Index entries for zeta function</a> %e A013680 zeta(4) = 1 + 1/(12 + 1/(6 + 1/(1 + 1/(3 + ...)))). - _Harry J. Smith_, Apr 29 2009 %t A013680 ContinuedFraction[Zeta[4],80] (* _Harvey P. Dale_, Oct 13 2013 *) %o A013680 (PARI) { allocatemem(932245000); default(realprecision, 21000); x=contfrac(Pi^4/90); for (n=1, 20000, write("b013680.txt", n-1, " ", x[n])); } \\ _Harry J. Smith_, Apr 29 2009 %Y A013680 Cf. A013662 (zeta(4)). - _Harry J. Smith_, Apr 29 2009 %Y A013680 Cf. continued fractions for zeta(2)-zeta(20): A013679, A013631, A013681-A013696. %K A013680 nonn,cofr %O A013680 0,2 %A A013680 _N. J. A. Sloane_ %E A013680 Offset changed by _Andrew Howroyd_, Jul 09 2024