cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A013708 a(n) = 3^(2*n+1).

This page as a plain text file.
%I A013708 #46 Jul 12 2024 10:17:17
%S A013708 3,27,243,2187,19683,177147,1594323,14348907,129140163,1162261467,
%T A013708 10460353203,94143178827,847288609443,7625597484987,68630377364883,
%U A013708 617673396283947,5559060566555523,50031545098999707,450283905890997363,4052555153018976267,36472996377170786403
%N A013708 a(n) = 3^(2*n+1).
%C A013708 1/3 + 1/27 + 1/243 + ... = 3/8. - _Gary W. Adamson_, Aug 29 2008
%C A013708 Number k such that if a=k, b=8*k, c=15*k, d=36*k*sqrt(3*k), then a^3 + b^3 + c^3 = d^2; e.g.: a=3, b=24, c=45, d=324, 3^3 + 24^3 + 45^3 = 324^2. - _Vincenzo Librandi_, Nov 20 2010
%H A013708 Delbert L. Johnson, <a href="/A013708/b013708.txt">Table of n, a(n) for n = 0..1047</a>
%H A013708 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>.
%H A013708 R. J. Mathar, <a href="/A102518/a102518.pdf">Counting Walks on Finite Graphs</a>, Nov 2020, Section 4.
%H A013708 <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (9).
%F A013708 From _Philippe Deléham_, Nov 23 2008: (Start)
%F A013708 a(n) = 9*a(n-1), n > 0; a(0)=3.
%F A013708 G.f.: 3/(1-9*x). (End)
%F A013708 a(n) = A000244(2*n+1). - _R. J. Mathar_, Jul 10 2015
%F A013708 E.g.f.: 3*exp(9*x). - _Stefano Spezia_, Jul 09 2024
%t A013708 NestList[9#&,3,20] (* _Harvey P. Dale_, Apr 21 2014 *)
%o A013708 (PARI) a(n)=3^(2*n+1) \\ _Charles R Greathouse IV_, Aug 05 2015
%o A013708 (Python)
%o A013708 print([3**(2*n+1) for n in range(18)]) # _Michael S. Branicky_, Mar 27 2021
%Y A013708 Cf. A000244.
%K A013708 nonn,easy
%O A013708 0,1
%A A013708 _N. J. A. Sloane_