This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A013988 #43 Oct 03 2023 13:14:33 %S A013988 1,5,1,55,15,1,935,295,30,1,21505,7425,925,50,1,623645,229405,32400, %T A013988 2225,75,1,21827575,8423415,1298605,103600,4550,105,1,894930575, %U A013988 358764175,59069010,5235405,271950,8330,140,1,42061737025,17398082625,3016869625,289426830,16929255,621810,14070,180,1 %N A013988 Triangle read by rows, the inverse Bell transform of n!*binomial(5,n) (without column 0). %C A013988 Previous name was: Triangle of numbers related to triangle A049224; generalization of Stirling numbers of second kind A008277, Bessel triangle A001497. %C A013988 T(n, m) = S2p(-5; n,m), a member of a sequence of triangles including S2p(-1; n,m) = A001497(n-1,m-1) (Bessel triangle) and ((-1)^(n-m))*S2p(1; n,m) = A008277(n,m) (Stirling 2nd kind). T(n, 1) = A008543(n-1). %C A013988 For the definition of the Bell transform see A264428 and the link. - _Peter Luschny_, Jan 16 2016 %H A013988 G. C. Greubel, <a href="/A013988/b013988.txt">Rows n = 1..50 of the triangle, flattened</a> %H A013988 P. Blasiak, K. A. Penson and A. I. Solomon, <a href="http://www.arXiv.org/abs/quant-ph/0402027">The general boson normal ordering problem</a>, arXiv:quant-ph/0402027, 2004. %H A013988 Milan Janjic, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Janjic/janjic22.html">Some classes of numbers and derivatives</a>, JIS 12 (2009) 09.8.3 %H A013988 Wolfdieter Lang, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/LANG/lang.html">On generalizations of Stirling number triangles</a>, J. Integer Seqs., Vol. 3 (2000), #00.2.4. %H A013988 Peter Luschny, <a href="https://oeis.org/wiki/User:Peter_Luschny/BellTransform">The Bell transform</a> %H A013988 <a href="/index/Be#Bessel">Index entries for sequences related to Bessel functions or polynomials</a> %F A013988 T(n, m) = n!*A049224(n, m)/(m!*6^(n-m)); %F A013988 T(n+1, m) = (6*n-m)*T(n, m) + T(n, m-1), for n >= m >= 1, with T(n, m) = 0, n<m, and T(n, 0) = 0, T(1, 1) = 1. %F A013988 E.g.f. of m-th column: ((1 - (1-6*x)^(1/6))^m)/m!. %F A013988 Sum_{k=1..n} T(n, k) = A028844(n). %e A013988 Triangle begins as: %e A013988 1; %e A013988 5, 1; %e A013988 55, 15, 1; %e A013988 935, 295, 30, 1; %e A013988 21505, 7425, 925, 50, 1; %e A013988 623645, 229405, 32400, 2225, 75, 1; %e A013988 21827575, 8423415, 1298605, 103600, 4550, 105, 1; %e A013988 894930575, 358764175, 59069010, 5235405, 271950, 8330, 140, 1; %t A013988 (* First program *) %t A013988 rows = 10; %t A013988 b[n_, m_] := BellY[n, m, Table[k! Binomial[5, k], {k, 0, rows}]]; %t A013988 A = Table[b[n, m], {n, 1, rows}, {m, 1, rows}] // Inverse // Abs; %t A013988 A013988 = Table[A[[n, m]], {n, 1, rows}, {m, 1, n}] // Flatten (* _Jean-François Alcover_, Jun 22 2018 *) %t A013988 (* Second program *) %t A013988 T[n_, k_]:= T[n, k]= If[k==0, 0, If[k==n, 1, (6*(n-1) -k)*T[n-1,k] +T[n-1, k-1]]]; %t A013988 Table[T[n,k], {n,12}, {k,n}]//Flatten (* _G. C. Greubel_, Oct 03 2023 *) %o A013988 (Sage) # uses[inverse_bell_matrix from A264428] %o A013988 # Adds 1,0,0,0, ... as column 0 at the left side of the triangle. %o A013988 inverse_bell_matrix(lambda n: factorial(n)*binomial(5, n), 8) # _Peter Luschny_, Jan 16 2016 %o A013988 (Magma) %o A013988 function T(n,k) // T = A013988 %o A013988 if k eq 0 then return 0; %o A013988 elif k eq n then return 1; %o A013988 else return (6*(n-1)-k)*T(n-1,k) + T(n-1,k-1); %o A013988 end if; %o A013988 end function; %o A013988 [T(n,k): k in [1..n], n in [1..12]]; // _G. C. Greubel_, Oct 03 2023 %Y A013988 Cf. A008277, A008543, A049224, A264428. %Y A013988 Cf. A028844 (row sums). %Y A013988 Triangles with the recurrence T(n,k) = (m*(n-1)-k)*T(n-1,k) + T(n-1,k-1): A010054 (m=1), A001497 (m=2), A004747 (m=3), A000369 (m=4), A011801 (m=5), this sequence (m=6). %K A013988 easy,nonn,tabl %O A013988 1,2 %A A013988 _Wolfdieter Lang_ %E A013988 New name from _Peter Luschny_, Jan 16 2016