A073422
e = 1/a(0)+1/a(1)+1/a(2)+1/a(3)+... with each term a(n) being a positive or negative integer chosen so as to minimize the absolute difference between e and the partial sum.
Original entry on oeis.org
1, 1, 2, 5, 55, 9999, 3620211522, -26596490130011501642, 6462025287494698350477135653962718736877, -532695733923048954868620962844302990205269539900643893905567041090276924142488084
Offset: 0
a(4)=55 since e-(1/1)-(1/1)-(1/2)-(1/5)=0.0182818... is closer to 1/55=0.0181818... than to 1/54=0.0185185...
A304798
Denominators of sign-alternating Egyptian fraction expansion for 1/phi (=(sqrt(5)-1)/2).
Original entry on oeis.org
1, 2, 8, 143, 37042, 1563518960, 6534294597508602915, 365905726475037211039550490160754059749, 191234231522546096496793980270535044877607924567064996105428722406747743518730
Offset: 0
a(0)=1 since 1/phi is between 1/1 and 1/2 and 1/1 > 1/phi; i.e., floor(1/(1/phi)) = 1.
a(1)=2 since floor(1/(1/a(0) - 1/phi)) = 2.
a(2)=8 since floor(1/(1/phi - (1/a(0)-1/a(1)))) = 8, and so on.
Showing 1-2 of 2 results.
Comments