cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A014081 a(n) is the number of occurrences of '11' in the binary expansion of n.

This page as a plain text file.
%I A014081 #126 Feb 16 2025 08:32:32
%S A014081 0,0,0,1,0,0,1,2,0,0,0,1,1,1,2,3,0,0,0,1,0,0,1,2,1,1,1,2,2,2,3,4,0,0,
%T A014081 0,1,0,0,1,2,0,0,0,1,1,1,2,3,1,1,1,2,1,1,2,3,2,2,2,3,3,3,4,5,0,0,0,1,
%U A014081 0,0,1,2,0,0,0,1,1,1,2,3,0,0,0,1,0,0,1,2,1,1,1,2,2,2,3,4,1,1,1,2,1,1,2,3,1
%N A014081 a(n) is the number of occurrences of '11' in the binary expansion of n.
%C A014081 a(n) takes the value k for the first time at n = 2^(k+1)-1. Cf. A000225. - _Robert G. Wilson v_, Apr 02 2009
%C A014081 a(n) = A213629(n,3) for n > 2. - _Reinhard Zumkeller_, Jun 17 2012
%H A014081 Reinhard Zumkeller, <a href="/A014081/b014081.txt">Table of n, a(n) for n = 0..10000</a>
%H A014081 J.-P. Allouche, <a href="http://math.colgate.edu/~integers/graham2/graham2.Abstract.html">On an Inequality in a 1970 Paper of R. L. Graham</a>, INTEGERS 21A (2021), #A2.
%H A014081 Jean-Paul Allouche and Jeffrey Shallit, <a href="https://doi.org/10.1007/BFb0097122">Sums of digits and the Hurwitz zeta function</a>, in: K. Nagasaka and E. Fouvry (eds.), Analytic Number Theory, Lecture Notes in Mathematics, Vol. 1434, Springer, Berlin, Heidelberg, 1990, pp. 19-30.
%H A014081 John Brillhart and L. Carlitz, <a href="https://doi.org/10.1090/S0002-9939-1970-0260955-6">Note on the Shapiro Polynomials</a>, Proceedings of the American Mathematical Society, volume 25, number 1, May 1970, pages 114-118 (see A001782 for a scanned copy), with a(n) = exponent in theorem 4.
%H A014081 Helmut Prodinger, <a href="http://dx.doi.org/10.1137/0603004">Generalizing the sum of digits function</a>, SIAM J. Algebraic Discrete Methods, Vol. 3, No. 1 (1982), pp. 35-42. MR0644955 (83f:10009). [See B_2(11,n) on p. 35. - _N. J. A. Sloane_, Apr 06 2014]
%H A014081 Michel Rigo and Manon Stipulanti, <a href="https://arxiv.org/abs/2103.16966">Revisiting regular sequences in light of rational base numeration systems</a>, arXiv:2103.16966 [cs.FL], 2021. Mentions this sequence.
%H A014081 Bartosz Sobolewski and Lukas Spiegelhofer, <a href="https://arxiv.org/abs/2309.00142">Block occurrences in the binary expansion</a>, arXiv:2309.00142 [math.NT], 2023.
%H A014081 Ralf Stephan, <a href="/somedcgf.html">Some divide-and-conquer sequences with (relatively) simple ordinary generating functions</a>, 2004.
%H A014081 Ralf Stephan, <a href="/A079944/a079944.ps">Table of generating functions</a>.
%H A014081 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DigitBlock.html">Digit Block</a>.
%H A014081 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Rudin-ShapiroSequence.html">Rudin-Shapiro Sequence</a>.
%H A014081 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%F A014081 a(4n) = a(4n+1) = a(n), a(4n+2) = a(2n+1), a(4n+3) = a(2n+1) + 1. - _Ralf Stephan_, Aug 21 2003
%F A014081 G.f.: (1/(1-x)) * Sum_{k>=0} t^3/((1+t)*(1+t^2)), where t = x^(2^k). - _Ralf Stephan_, Sep 10 2003
%F A014081 a(n) = A000120(n) - A069010(n). - _Ralf Stephan_, Sep 10 2003
%F A014081 Sum_{n>=1} A014081(n)/(n*(n+1)) = A100046 (Allouche and Shallit, 1990). - _Amiram Eldar_, Jun 01 2021
%e A014081 The binary expansion of 15 is 1111, which contains three occurrences of 11, so a(15)=3.
%p A014081 # To count occurrences of 11..1 (k times) in binary expansion of v:
%p A014081 cn := proc(v, k) local n, s, nn, i, j, som, kk;
%p A014081 som := 0;
%p A014081 kk := convert(cat(seq(1, j = 1 .. k)),string);
%p A014081 n := convert(v, binary);
%p A014081 s := convert(n, string);
%p A014081 nn := length(s);
%p A014081 for i to nn - k + 1 do
%p A014081 if substring(s, i .. i + k - 1) = kk then som := som + 1 fi od;
%p A014081 som; end; # This program no longer worked. Corrected by _N. J. A. Sloane_, Apr 06 2014.
%p A014081 [seq(cn(n,2),n=0..300)];
%p A014081 # Alternative:
%p A014081 A014081 := proc(n) option remember;
%p A014081   if n mod 4 <= 1 then procname(floor(n/4))
%p A014081 elif n mod 4 = 2 then procname(n/2)
%p A014081 else 1 + procname((n-1)/2)
%p A014081 fi
%p A014081 end proc:
%p A014081 A014081(0):= 0:
%p A014081 map(A014081, [$0..1000]); # _Robert Israel_, Sep 04 2015
%t A014081 f[n_] := Count[ Partition[ IntegerDigits[n, 2], 2, 1], {1, 1}]; Table[ f@n, {n, 0, 104}] (* _Robert G. Wilson v_, Apr 02 2009 *)
%t A014081 Table[SequenceCount[IntegerDigits[n,2],{1,1},Overlaps->True],{n,0,120}] (* _Harvey P. Dale_, Jun 06 2022 *)
%o A014081 (Haskell)
%o A014081 import Data.Bits ((.&.))
%o A014081 a014081 n = a000120 (n .&. div n 2)  -- _Reinhard Zumkeller_, Jan 23 2012
%o A014081 (PARI) A014081(n)=sum(i=0,#binary(n)-2,bitand(n>>i,3)==3)  \\ _M. F. Hasler_, Jun 06 2012
%o A014081 (PARI) a(n) = hammingweight(bitand(n, n>>1)) ;
%o A014081 vector(105, i, a(i-1))  \\ _Gheorghe Coserea_, Aug 30 2015
%o A014081 (Python)
%o A014081 def a(n): return sum([((n>>i)&3==3) for i in range(len(bin(n)[2:]) - 1)]) # _Indranil Ghosh_, Jun 03 2017
%o A014081 (Python)
%o A014081 from re import split
%o A014081 def A014081(n): return sum(len(d)-1 for d in split('0+', bin(n)[2:]) if d != '') # _Chai Wah Wu_, Feb 04 2022
%Y A014081 Cf. A014082, A033264, A037800, A056973, A000225, A213629, A000120, A069010, A100046.
%Y A014081 First differences give A245194.
%Y A014081 A245195 gives 2^a(n).
%K A014081 nonn,base,easy
%O A014081 0,8
%A A014081 _Simon Plouffe_