This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A014091 #31 Jul 08 2025 02:52:26 %S A014091 4,5,6,7,8,9,10,12,13,14,15,16,18,19,20,21,22,24,25,26,28,30,31,32,33, %T A014091 34,36,38,39,40,42,43,44,45,46,48,49,50,52,54,55,56,58,60,61,62,63,64, %U A014091 66,68,69,70,72,73,74,75,76,78,80,81,82,84,85,86,88,90,91,92,94,96,98 %N A014091 Numbers that are the sum of 2 primes. %C A014091 Sequence consists of all primes + 2 and, conjecturally (Goldbach), of all even integers larger than 2. The Goldbach conjecture is that every even number is the sum of two primes. - _Emeric Deutsch_, Jul 14 2004 %H A014091 T. D. Noe, <a href="/A014091/b014091.txt">Table of n, a(n) for n = 1..1000</a> %H A014091 David Eisenbud and Brady Haran, <a href="https://www.youtube.com/watch?v=MxiTG96QOxw">Goldbach Conjecture</a>, Numberphile video (2017) %H A014091 T. Estermann, <a href="http://dx.doi.org/10.1112/plms/s2-42.1.501">Proof that every large integer is the sum of two primes and a square</a>, Proc. Lond. Math. Soc. 42 (1937) 501-516. %p A014091 sort({seq(2+ithprime(j),j=1..21)} union {seq(2*k,k=2..ceil(ithprime(21)/2))}); # _Emeric Deutsch_, Jul 14 2004 %t A014091 Take[ Union@ Flatten@ Table[ Prime@p + Prime@q, {p, 25}, {q, p}], 71] (* _Robert G. Wilson v_, Aug 31 2008 *) %o A014091 (PARI) isA014091(n)= my(i,p); i=1; p=prime(i); while(p<n, if( isprime(n-p), return(1)); i++; p=prime(i)); 0 %o A014091 n=0; for(a=2,100, if(isA014091(a), print(n," ",a); n++)) \\ _R. J. Mathar_, Aug 20 2006 %o A014091 (PARI) is(n)=if(n%2,isprime(n-2),n>2) \\ on Goldbach's conjecture; _Charles R Greathouse IV_, Oct 22 2013 %o A014091 (Haskell) %o A014091 a014091 n = a014091_list !! (n-1) %o A014091 a014091_list = filter (\x -> any ((== 1) . a010051) $ %o A014091 map (x -) $ takeWhile (< x) a000040_list) [1..] %o A014091 -- _Reinhard Zumkeller_, Oct 15 2014 %Y A014091 Complement = A014092. %Y A014091 Cf. A010051, A000040, A157931 (semiprimes). %K A014091 nonn %O A014091 1,1 %A A014091 _N. J. A. Sloane_ %E A014091 More terms from _Robert G. Wilson v_, Aug 31 2008