This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A014097 #35 Dec 27 2024 01:21:52 %S A014097 1,1,1,5,6,7,8,13,19,26,34,47,66,92,126,173,239,331,457,630,869,1200, %T A014097 1657,2287,3156,4356,6013,8300,11456,15812,21825,30125,41581,57393, %U A014097 79218,109343,150924,208317,287535 %N A014097 a(n) = a(n-1)+a(n-4). %C A014097 Number of ways to cover (without overlapping) a ring lattice (necklace) of n sites with molecules that are 4 sites wide. %C A014097 This comment covers a family of sequences which satisfy a recurrence of the form a(n) = a(n-1) + a(n-m), with a(n) = 1 for n = 1...m-1, a(m) = m+1. The generating function is (x+m*x^m)/(1-x-x^m). Also a(n) = 1 + n*Sum_{i=1..n/m} binomial(n-1-(m-1)*i, i-1)/i. This gives the number of ways to cover (without overlapping) a ring lattice (or necklace) of n sites with molecules that are m sites wide. Special cases: m=2: A000204, m=3: A001609, m=4: A014097, m=5: A058368, m=6: A058367, m=7: A058366, m=8: A058365, m=9: A058364. %H A014097 Indranil Ghosh, <a href="/A014097/b014097.txt">Table of n, a(n) for n = 1..7130</a> %H A014097 D. J. Broadhurst, <a href="http://arXiv.org/abs/hep-th/9612012">Conjectured enumeration of irreducible multiple zeta values, from knots and Feynman diagrams</a>, arXiv:hep-th/9612012, 1996. %H A014097 E. Di Cera and Y. Kong, <a href="http://dx.doi.org/10.1016/S0301-4622(96)02178-3">Theory of multivalent binding in one and two-dimensional lattices</a>, Biophysical Chemistry, Vol. 61 (1996), pp. 107-124. %H A014097 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,1). %F A014097 G.f.: -x*(1+4*x^3)/(-1+x+x^4). a(n)= 4*A003269(n)-3*A003269(n-1). - _R. J. Mathar_, Nov 16 2007 %F A014097 a(n) = Sum_{j=0..(n-1)/3}(binomial(n-3*j,n-4*j)*n/(n-3*j)). - _Vladimir Kruchinin_, Mar 25 2016 %F A014097 From _Greg Dresden_, Aug 23 2019: (Start) %F A014097 a(n) = r1^n + r2^n + r3^n + r4^n, where {r1,r2,r3,r4} are the four roots of x^4-x^3-1=0, see A086106, A230151. %F A014097 a(n) = round(r^n) for n>21 and r the positive real root of x^4-x^3-1. %F A014097 (End) %t A014097 LinearRecurrence[{1,0,0,1},{1,1,1,5},40] (* _Harvey P. Dale_, Mar 06 2016 *) %o A014097 (Maxima) %o A014097 a(n):=sum(binomial(n-3*j,n-4*j)*n/(n-3*j),j,0,(n-1)/3); /* _Vladimir Kruchinin_, Mar 25 2016 */ %o A014097 (PARI) a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; 1,0,0,1]^(n-1)*[1;1;1;5])[1,1] \\ _Charles R Greathouse IV_, Sep 09 2016 %Y A014097 Cf. A020999, A000204, A001609, A000079, A003269, A003520, A005708, A005709, A005710. %K A014097 nonn,easy %O A014097 1,4 %A A014097 _David Broadhurst_ %E A014097 Additional comments from Yong Kong (ykong(AT)curagen.com), Dec 16 2000