A014110 Number of ordered ways of writing n as a sum of 4 squares of nonnegative integers.
1, 4, 6, 4, 5, 12, 12, 4, 6, 16, 18, 12, 8, 16, 24, 12, 5, 24, 30, 16, 18, 28, 24, 12, 12, 28, 42, 28, 12, 36, 48, 16, 6, 36, 42, 36, 29, 28, 48, 28, 18, 48, 60, 28, 24, 60, 48, 24, 8, 44, 72, 48, 30, 48, 84, 36, 24, 52, 54, 48, 36, 52, 72, 52, 5, 72, 96, 40, 42, 72
Offset: 0
Examples
From _R. J. Mathar_, May 16 2023: (Start) a(1)=4 counts 0^2+0^2+0^2+1^2 = 0^2+0^2+1^2+0^2 = 0^2+1^2+0^2+0^2 = 1^2+0^2+0^2+0^2. a(2)=6 counts 0^2+0^2+1^2+1^2 = 0^2+1^2+0^2+1^2 = 0^2+1^2+1^2+0^2 = 1^2+0^2+0^2+1^2 = 1^2+0^2+1^2+0^2 = 1^2+1^2+0^2+0^2. (End)
Links
Crossrefs
Convolution square of A000925.
Programs
-
Mathematica
a = Compile[{{n, Integer}}, Block[{c = 0, k, j, i = Floor[Sqrt[n]]}, While[i > -1, j = Floor[Sqrt[n - i^2]]; While[j > -1, k = Floor[Sqrt[n - i^2 - j^2]]; While[k > -1, c += Boole[ Mod[ Sqrt[ n - i^2 - j^2 - k^2], 1] == 0]; k--]; j--]; i--]; c]]; Array[a, 70, 0] - (* _Robert G. Wilson v, Aug 13 2025 *)
Formula
Coefficient of q^n in (1/16)*(1 + theta_3(0, q))^4; or coeff. of q^n in (Sum q^(i^2), i=0..inf)^4.
Comments